The Galvin property at successors of singulars

Tom Benhamou

Department of Mathematics Tel Aviv University

July 13, 2022

Benhamou, T.

Advances in Set Theory, August 2022

July 13, 2022 1 / 14

・ロト ・日下・ ・ ヨト・

Galvin's Theorem

In a paper by Baumgartner, Hajnal and Maté [1], the following theorem due to F. Galvin was published:

Theorem 1 (Galvin's Theorem)

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every normal filter U over κ , and for any collection $\langle A_{\alpha} \mid \alpha < \kappa^+ \rangle \in [U]^{\kappa^+}$ consisting of κ^+ -many sets, there is a subcollection $\langle A_i \mid i \in I \rangle$, of size κ (i.e. $I \in [\kappa^+]^{\kappa}$) such that $\bigcap_{i \in I} A_i \in U$.

In particular, if *GCH* holds and κ is a regular cardinal then from κ^+ -many clubs, one can always extract κ -many for which the intersection is a club. Let us put this combinatorical/saturation property into a definition:

Definition 2 (Galvin's Property)

Let \mathcal{F} be a filter over κ and $\mu \leq \lambda$. Denote by $Gal(\mathcal{F}, \mu, \lambda)$ the following statement:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda} \exists I \in [\lambda]^{\mu} . \bigcap_{i \in I} A_i \in \mathcal{F}$$

イロト イヨト イヨト イヨ

Example 3

- Galvin's Theorem ≡ If κ^{<κ} = κ the Gal(U, κ, κ⁺) holds for every normal U over κ.
- $e If \mu' \leq \mu \leq \lambda \leq \lambda' then Gal(\mathcal{F}, \mu, \lambda) \Rightarrow Gal(\mathcal{F}, \mu', \lambda').$
- If (e.g.) \mathcal{F} contains all the final segments and $\mu = cf(\kappa)$ then $\neg Gal(\mathcal{F}, \mu, \mu)$.
- \mathcal{F} is μ -complete \iff for every $\mu' < \mu$, $Gal(\mathcal{F}, \mu', \mu')$.

Most of the work presented here is the results of two projects. The first is a joint project with **Alejandro Poveda** and **Shimon Garti** where we studied the Galvin property on filters and some applications of it, we were specially interested with the club filter. The second project, joint with **Moti Gitik**, where we were mostly focused on κ -complete ultrafilters.

< □ > < □ > < □ > < □ > < □ >

Applications of the Galvin property

- Density of old sets in Prikry extensions[7],[2]: Let U be a κ -complete ultrafilter and $\mu \leq \lambda$. Then the following are equivalent:
 - $Gal(U, \mu, \lambda)$
 - Every set of ordinals $x \in V^{Prikry(U)}$ with $|x|^{V^{Prikry(U)}} = \lambda$ contains a set $y \in V$ with $|y|^V = \mu$.
- Adding Cohens with Prikry[5]: Gal(U, κ, λ) implies that Prikry(U) does not add λ-many mutually generic Cohen functions to κ.
- Quotients of Prikry-type forcings[4]: Some generalization of Galvin's property (which hold for normal filters) is used to prove that quotients of a forcing \mathbb{P} are κ^+ -cc in $V^{\mathbb{P}}$, where \mathbb{P} can be the Magidor-Radin forcing, the Prikry forcing with P-points (and potentially other Prikry-type forcings).
- **Partition relations**[2]: For example, if there is a uniform ultrafilter such that $Gal(U, \kappa^+, \lambda)$ holds then $\binom{\lambda}{\kappa} \to \binom{\kappa^+}{\kappa}$.
- Kurepa trees[3]: If U is a κ-complete ultrafilter, such that Cub_κ ⊆ U which concentrates on E^κ_μ for some μ < κ, then there is no Slim S-Kurepa tree for every stationary S ⊆ E^κ_μ.
- Some consistently new instances of $\lambda \to (\lambda, \omega + 1)$, relation to strong generating sequence of ultrafilters, and more...

How far can we push Galvin's Theorem?

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4 ([4])

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

The proof of this theorem can be adapted to work for filters of the form: $U - \lim_{\alpha} U_{\alpha}$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma})...)$

Corollary 5

In L[U], every κ -complete (even σ -complete) ultrafilter W satisfy Gal(W, κ , κ^+).

Question

Is it consistent to have a filter/ultrafilter U which is not of the previous form for which $Gal(U, \kappa, \kappa^+)$ holds?

Benhamou, T.

Non-Galvin filters and ultrafilters

Finding non-Galvin filters is relatively easy.

Definition 6

A family of subsets of κ , $\langle A_i \mid i < \lambda \rangle$ with the property that for every $I, J \in [\lambda]^{<\kappa}$, $I \cap J = \emptyset \Rightarrow (\bigcap_{i \in I} A_i) \cap (\bigcap_{j \in J} A_j^c) \neq \emptyset$ is called a κ -independent family of size λ ,

 κ -independent families of size 2^{κ} always exist given that $\kappa^{<\kappa} = \kappa$. Moreover, without this cardinal arithmetic assumptions, λ -many mutually generic Cohen functions over a regular κ form a κ -independent family.

Proposition 1

Let \mathcal{F} be the κ -complete filter generated by a κ -independent family of size λ , then $\neg Gal(\mathcal{F}, \kappa, \lambda)$.

Question

Is there a ZFC-construction of a κ -complete filter \mathcal{F} such that $Cub_{\kappa} \subseteq \mathcal{F}$ and $\neg Gal(\mathcal{F}, \kappa, \kappa^+)$?

Benhamou, T.

イロト イヨト イヨト イヨト

Certainly, the existence of a κ -complete ultrafilter which is not Galvin requires large cardinals. The first construction is due to S. Garti, S. Shelah and B.[3], starting from a supercompact. Lately we obtained this from optimal assumptions:

Theorem 7 ([5])

Assume GCH.

- If κ is a measurable cardinal then there is a forcing extension where there is a κ -complete ultrafilter U such that $Cub_{\kappa} \cup \{reg_{\kappa}\} \subseteq U$ and $\neg Gal(U, \kappa, \kappa^+)$.
- **②** If $o(\kappa) = 2$, then there is a forcing extension where there is a *κ*-complete ultrafilter U such that $Cub_{\kappa} \cup \{sing_{\kappa}\} \subseteq U$ and $\neg Gal(U, \kappa, \kappa^+)$.
- If o(κ) = κ⁺⁺ then there is a forcing extension where there is a κ-complete ultrafilter Cub_κ ∪ {reg_κ} ⊆ U such that ¬Gal(U, κ, κ⁺⁺)

イロト イヨト イヨト イヨト

The Abraham-Shelah model

Trying to relax the assumption $\kappa^{<\kappa} = \kappa$ in Gavin's theorem, we have the following consistency result by Abraham and Shelah.

Theorem 8 (Abraham-Shelah forcing)

Assume GCH, let κ be a regular cardinal, and $\kappa^+ < cf(\lambda) \le \lambda$. Then there is a forcing extension by a κ -directed, cofinality preserving forcing notion such that $2^{\kappa^+} = \lambda$ and there is a sequence $\langle C_i | i < \lambda \rangle$ such that:

•
$$C_i$$
 is a club at κ^+ .

• for every
$$I \in [\lambda]^{\kappa^+}$$
, $|\bigcap_{i \in I} C_i| < \kappa$.

In particular, $\neg Gal(Cub_{\kappa^+}, \kappa^+, 2^{\kappa^+}).$

A natural question is what happens on inaccessible cardinals? of course, by Galvin's theorem, we should be interested in weakly inaccessible Cardinals.

Question

Is it consistent to have a weakly inaccessible cardinal κ such that $\neg Gal(Cub_{\kappa}, \kappa, \kappa^{+})$?

There are some limiting results due to Garti (see [6])

At successors of singular cardinals

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem: is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 9 ([2])

Assume GCH and that E is a (κ, κ^{++}) -extender. Then there is a forcing extension where $cf(\kappa) = \omega$ and $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

The idea is to iterate Abraham-Shelah's forcing on inaccessibles up to and including κ using an Easton support. This produces $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$. Using a Woodin-like argument, based on Y. Ben-Shalom (see [8]), one can argue that κ remains measurable after the iteration. Finally, singularize κ using Prikry/Magidor forcing. The key lemma is to prove that Prikry forcing does not destroy a witness for the failure of the Galvin property:

Proposition 2

A κ^+ -cc forcing preserves a witness for $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Assuming larger cardinals, we were able to get this failure to hold globally, for every successor of singular cardinal.

9/14

The strong negation at successor of singulars

The sequence of clubs $\langle C_i \mid i < \kappa^+ \rangle$ produced by the Abraham-Shelah forcing, witnesses a stronger failure of $Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$, indeed for any $I \in [\kappa^{++}]^{\kappa^+}$, $\bigcap_{i \in I} C_i$ is actually of size less than κ . Let us denote this by $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Interestingly, the previous argument does not work for the strong negation:

Proposition 3

In general κ^+ -cc forcings do not preserve $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Indeed, any forcing which adds a set of size κ which diagonalizes $(Cub_{\kappa})^{V}$ (e.g. diagonalizing the club filter, Magidor forcing with $o(\kappa) = \kappa$) kills $\neg_{st} Gal(Cub_{\kappa^{+}}, \kappa^{+}, \kappa^{++})$.

Question

Is it consistent that $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ holds at a successor of a singular cardinal?

イロト イヨト イヨト イヨト

Two opposite results for Prikry forcing

On one hand Prikry forcing does not add a set of cardinality κ which diagonalizes $(Cub_{\kappa})^{V}$:

Theorem 10 ([2])

Let U be a normal ultrafilter over κ . Let $\langle c_n | n < \omega \rangle$ be V-generic Prikry sequence for U, and suppose that $A \in V[\langle c_n | n < \omega \rangle]$ diagonalizes $(Cub_{\kappa})^V$. Then, there exists $\xi < \kappa$ such that $A \setminus \xi \subseteq \{c_n | n < \omega\}$. In particular, $|A \setminus \xi| \leq \aleph_0$.

On the other hand, just forcing a Prikry sequence is not enough:

Theorem 11 ([2])

Let $\mathcal C$ be a witness for the strong negation. Then there exists $\mathcal D$, such that:

- \mathcal{D} is also a witness for the strong negation;
- So For every normal ultrafilter U over κ , forcing with Prikry(U) yields a generic extension where \mathcal{D} cease to be a witness.

< □ > < □ > < □ > < □ > < □ >

Thank you for your attention!

メロト メタト メヨト メヨト

References I

- James E. Baumgartner, Andres Hajnal, and A. Mate, *Weak saturation properties of ideals*, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, North-Holland, Amsterdam, 1975, pp. 137–158. Colloq. Math. Soc. János Bolyai, Vol. 10. MR 0369081 (51 #5317)
- Tom Benhamou, Shimon Garti, and Alejandro Poveda, *Negating the Galvin Property*, preprint (2021), arXiv:2112.13373.
- Tom Benhamou, Shimon Garti, and Saharon Shelah, *Kurepa trees and the failure of the galvin property*, accepted to Proc. am. math. sc. (2021).
- Tom Benhamou and Moti Gitik, *Intermediate Models of Magidor-Radin Forcing-Part II*, Annals of Pure and Applied Logic **173** (2022), 103107.
- On Cohen and Prikry Forcing Notions, preprint (2022), arXiv:2204.02860.
 - Shimon Garti, *Weak diamond and galvin's property*, Periodica Mathematica Hungarica **74** (2017), 128–136.

< □ > < □ > < □ > < □ > < □ >

Moti Gitik, On Density of Old Sets in Prikry Type Extensions, Proceedings of the American Mathematical Society **145** (2017), no. 2, 881–887.

Yoav Ben Shalom, On the Woodin Construction of Failure of GCH at a Measurable Cardinal, 2017.

Image: A matching of the second se