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Mirna Džamonja

“From finite to infinite” EU project
FINTOINF H2020- No.1010232

Study the passage from properties of finite to those of
infinite structures in order to get transfer of certain
properties:

small/big Ramsey degrees, graph theoretic
invariants, logical properties, algorithmics etc.

A project under way: effective properties of structures of
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Reasonable
uncountable
structures

Mirna Džamonja
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Reasonable
uncountable
structures

Mirna Džamonja

“From finite to infinite” EU project
FINTOINF H2020- No.1010232

Study the passage from properties of finite to those of
infinite structures in order to get transfer of certain
properties: small/big Ramsey degrees, graph theoretic
invariants, logical properties, algorithmics etc.

A project under way: effective properties of structures of
size ℵ1. Classes of nice structures of size ℵ1 (with Kubiś).
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Some results

C O L L O Q U I U M M A T H E M A T I C U M
VOL. 169 2022 NO. 2

GRAPHONS ARISING FROM
GRAPHS DEFINABLE OVER FINITE FIELDS

BY

MIRNA DŽAMONJA (Paris) and IVAN TOMAŠIĆ (London)

Abstract. We prove a version of Tao’s algebraic regularity lemma for asymptotic
classes in the context of graphons. We apply it to study expander difference polynomials
over fields with powers of Frobenius.

1. Introduction

1.1. Historical overview and summary of results. Tao’s algebraic
regularity lemma is a variant of the celebrated Szemerédi’s regularity lemma
that applies to graphs that can be defined by a first-order formula over finite
fields. It states that such a graph can be decomposed into definable pieces
which are roughly about the same size and such that the edges between those
pieces behave almost randomly. This process is referred to as regularisation.
The result was proved by Tao [23] in order to study expander polynomials
over finite fields, and initially it was formulated for fields of large enough
characteristics.

Further developments on Tao’s lemma have a somewhat complex history.
In a private correspondence to Tao, Hrushovski [10] gave another proof using
the model-theoretic tools for studying the growth rates of definable sets over
finite fields, as developed by Chatzidakis–van den Dries–Macintyre [5]. Inde-
pendently, Pillay and Starchenko gave an analogous proof in the preprint [19].
The advantage of these proofs is that they remove the requirement of the
large characteristics of the field. Pillay and Starchenko state that their proof
also works for ‘measurable’ structures studied in the the context of asymp-
totic classes of finite structures by Macpherson–Steinhorn [16] and Elwes–
Macpherson [8]. García–Macpherson–Steinhorn [9] state, without proof, a
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BIG RAMSEY DEGREES IN ULTRAPRODUCTS OF

FINITE STRUCTURES

DANA BARTOŠOVÁ, MIRNA DŽAMONJA, REHANA PATEL, AND LYNN SCOW

Abstract. Here we look at a question and answer it.

(1)
(1) Alt Title: Big Ramsey
Degrees in (not of!)
Pseudofinite Structures.
Determine if this would
make our paper more
easily searchable by
interested people.I believe
many more people know
about ultraproducts then
of the word pseudofinite.
MD

1

1. Introduction

To be written at the end. What the aim of the paper is and what we proved.
(2) (3)

(2) Comment on
Chernikov’s work on
combinatorics in pseu-
dofinite structures.
Hrushovski and
Chatzidakis on pseudo-
finite fields. Ivan and
Mirna. Starchenko and
Pillay, asymptotic classes
– Macpherson/Steinhorn,
application in di↵erence
fields. Ozlem Beyarslan
”the generic hypergraph
is pseudofinite”.
Vaananen. Dario Garcia,
thesis.

(3) See if we can apply
Ozlem’s result and our
result to some Ramsey
property of the generic
hypergraph

(4)

(4) RP 14-08: A quick
search of Chernikov’s
website found two papers
using ultraproducts:
https://arxiv.org/pdf/
2010.00726.pdf and
https://arxiv.org/pdf/
1607.07701.pdf. Neither
seems directly related,
but we should check
further.

2. Background and Preliminaries

Here we introduce our notation and principal definitions.
(?) This all should go after the definition of ultrafilters, so after the

sentence ”Let L be an arbitrary finite relational signature.” However since
it is sort of unclear what exactly we want to keep, I am ignoring it for the
moment. Regular ultrafilters are defined in [?] VI, §1, Def 1.3, p. 326.

In our context, let us focus on non-principal ultrafilters on !.

Claim 2.1. Any non-principal ultrafilter D on ! is regular.

Proof. By definition, to be regular, a filter D on I := ! must be |I| =
@0-regular, meaning there must be a countably infinite family of sets that
regularizes D.

But since D is nonprincipal, it contains all cofinite sets, so it is regularized
by the sets Xi := ! \ i since

2010 Mathematics Subject Classification. 03C20.
This research was done as part of the American Institute of Mathematics SQuaRE

programme. The authors thank AIM for their support. Dana Bartošová is supported
by the NSF grant DMS-1953955. Mirna Džamonja received funding from the European’s
Union Horizon 2020 research and innovation programme under the Maria Sko lodowska-
Curie grant agreement No 1010232. She equally thanks l’Institut d’Histoire et de
Philosophie des Sciences et des Techniques, Université Panthéon-Sorbonne, where she
is an Associate Member and the University of East Anglia, Norwich, UK, where she is a
Visiting Professor.

1LAST EDIT Lynn: Apr. 23, 2022, added a remark for clarity.
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Figure: In preparation D.
Bartošova, M. Dž, R. Patel and
L. Scow Big Ramsey Degrees
in Ultraproducts of Finite
Structures



Reasonable
uncountable
structures

Mirna Džamonja

Infinite objects are studied in mathematics, but also in
computer sciences: Turing machines, automata, infinite
words, termination processes, ‘‘small” infinite sets.

Modelling of unbounded processes. Potential infinity.

In mathematics, especially set theory and related
subjects, we study the actual infinity. Cantor named the
infinity. ℵ0,ℵ1, . . .

In a more distant past finite and infinite were studied
mostly by trying to reflect something that was known from
one context, to the other. From the actual finite to the
actual infinite. Not that many things carry over.

Figure: Finite and Infinite Combinatorics 1991
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Take the process into account

A more recent approach is to look also at the how the
infinite object was built from the finite ones.

So, to look
into some sort of limit of finite structures.

Examples: Fraı̈ssé limits, graphons, graphings, 1st order
convergence, morasses, ultraproducts ... ‘small infinite
sets’ (data register automata)

These limits may have one of the following three infinite
sizes:

ℵ0 (the first infinite),
ℵ1 (the successor),
2ℵ0 = c (the exp).

CH is like the P=NP problem for set theory.
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Mirna Džamonja

Effectiveness for a set theorist
This basically means ‘nice’,‘’definable’.

Descriptive set
theory starts with CH: CH is true for closed subsets of the
reals (Cantor-Bendixson). This gives rise to various
hierarchies: countable unions of closed sets Fσ -CH is
still true. Close under complements and keep closing
under countable unions=Borel hierarchy. Analytic,
projective sets ...Connection with Turing computablity
(Kleene, Moschovakis).

This leads to a classification method in Polish (complete
separable metric spaces). Examples : R, the Cantor
space 2ω- sequences of 0s ans 1s or the Baire space
ωω=sequences of natural numbers. Or all sorts of
unexpected examples.

A notion of Borel reduction and completeness. A very
good method to say a problem is unclassifiable : it is
complete in some complicated enough class. Like
complexity theory in computer sciences.
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ℵ1 is not your usual infinite

The analogue of the compactness theorem fails for
Lω1,ω1 .

The analogue of Ramsey theorem fails.
The analogue of descriptive set theory fails even in
2ω1 .
The analogue of König’s theorem fails. Aronszajn
tree: an uncountable tree with no uncountable chains
or antichains.

No effectiveness notion.

What to do ? Turn the tables ! Concentrate on nicely built
sets. Concentrate on a different notion of effectiveness.
Build automata.
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Mirna Džamonja

ℵ1 is not your usual infinite

The analogue of the compactness theorem fails for
Lω1,ω1 .
The analogue of Ramsey theorem fails.
The analogue of descriptive set theory fails even in
2ω1 .
The analogue of König’s theorem fails. Aronszajn
tree: an uncountable tree with no uncountable chains
or antichains.

No effectiveness notion.

What to do ?

Turn the tables ! Concentrate on nicely built
sets. Concentrate on a different notion of effectiveness.
Build automata.



Reasonable
uncountable
structures

Mirna Džamonja
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An automaton to study
Let T be an Aronszajn tree, Σ a finite alphabet, S a finite
set of states, I ⊆ S the set of initial states and F ⊆ S a
set of final states.

t : (S × Σ)× S be a transition table.
The T -automatonM based on t takes as input strings of
the form X : p → Σ where p is a path in T (hence these
are paths of T labelled by the letters of Σ). In addition,
there is a limit-accepting function Ψ : P(S)→ S.

A run of the automaton on X is a sequence r(p) of states
of length lg(p) where

r(0) ∈ S,
for each α < lg(p) we have (r(α),p(α), r(α + 1)) ∈ t ,

(countable limit condition) if δ ≤ lg(p) is a non-zero
limit ordinal, then r(δ) = Ψ(Aδ) where Aδ is the set of
all s ∈ S which appear cofinaly often in r � δ.

The run r is accepting if r(lg(p)) ∈ F . The automaton
accepts X if there is an accepting run on X .
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Mirna Džamonja

An automaton to study
Let T be an Aronszajn tree, Σ a finite alphabet, S a finite
set of states, I ⊆ S the set of initial states and F ⊆ S a
set of final states. t : (S × Σ)× S be a transition table.
The T -automatonM based on t takes as input strings of
the form X : p → Σ where p is a path in T (hence these
are paths of T labelled by the letters of Σ). In addition,
there is a limit-accepting function Ψ : P(S)→ S.

A run of the automaton on X is a sequence r(p) of states
of length lg(p) where

r(0) ∈ S,
for each α < lg(p) we have (r(α),p(α), r(α + 1)) ∈ t ,

(countable limit condition) if δ ≤ lg(p) is a non-zero
limit ordinal, then r(δ) = Ψ(Aδ) where Aδ is the set of
all s ∈ S which appear cofinaly often in r � δ.

The run r is accepting if r(lg(p)) ∈ F . The automaton
accepts X if there is an accepting run on X .



Reasonable
uncountable
structures

Mirna Džamonja

Questions to ask

1 Is the emptiness problem of an Aronszajn tree
automaton decidable?

(and what decidable means)
2 Is every non-deterministic Aronszajn tree automaton

equivalent to a deterministic one on the same tree?
3 Suppose that ϕ is a monadic formula and T an

Aronszajn tree. Is there a T -automaton equivalent to
ϕ?

Positive answers would indicate that Aronszajn tree
automata give a good notion of effectiveness in <ω1ω1.
So, the next step of the programme would be to use them
to produce families of nice subsets of <ω1ω1.

Application Metaverse:
an automaton being built in a future universe of
mathematics (forcing), in parallel with a run being
produced on it. Suslin tree.
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automata give a good notion of effectiveness in <ω1ω1.
So, the next step of the programme would be to use them
to produce families of nice subsets of <ω1ω1.

Application Metaverse:
an automaton being built in a future universe of
mathematics (forcing), in parallel with a run being
produced on it. Suslin tree.
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An introduction to morasses

Morasses are a way to build objects of size ℵ1 through
finite approximations.

Including a Suslin tree. Jensen
(1972) studied two cardinal transfer principles in L and to
prove them showed that morasses exist in L. They are
combinatorial structures whose purpose is to build object
of size, say, κ+n, using approximations of size < κ (that
would be called a (κ,n)-morass). We shall be exclusively
interested in (ω,1)-morasses. Moreover, we shall use a
vastly simplified framework developed by Velleman
(1984). Such an object exists in ZFC.
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A (neat) simplified (ω,1)-morass is a system
M = 〈θα : α ≤ ω〉, 〈Fα,β : α < β ≤ ω〉 such that

1 for α < ω, θα is a finite number > 0, and θω = ω1,
2 for α < β < ω, Fα,β is a finite set of order preserving

functions from θα to θβ,
3 Fα,ω is a set of order preserving functions from θα to
ω1 such that

⋃
f∈Fα,ω f “θα = ω1,

4 for all α < β < γ ≤ ω we have that
Fα,γ = {f ◦ g : g ∈ Fα,β and f ∈ Fβ,γ},

5 Fα,α+1 always contains the identity function idα on θα
and either this is all, or Fα,α+1 = {idα,hα} for some
hα such that there is a splitting point β with
hα � β = idα � β and hα(β) > θα,

6 for every β0, β1 < ω and fl ∈ Fβl ,ω for l < 2 there is
γ < ω with β0, β1 < γ, a function g ∈ Fγ,ω and
f ′l ∈ Fβl ,γ such that fl = g ◦ f ′l for l < 2.
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We study objects built along such a morasses.

We fix a
simplified morassM, in a given arbitrary universe V of
set theory. We may consider V and forcing extensions of
V .

K and C denote classes of structures of first order
languages, closed under isomorphisms and with given
notions of embedding ≤K and ≤C. A paired class, (C,K)
is:

1 C consists of finite structures, K consists of
structures of size ≤ ℵ1,

2 the language L(C) of C is a restriction of the
language L(K) of K,

3 If F0 ≤K F1, then F0 � L(C) ≤C F1 � L(C)

4 for every finite F ∈ K, the restriction of F � L(C) ∈ C.
The only symbols from L(C) that are interpreted on a
finite structure F are those whose arity is ≤ |F | for the
relation symbols and < |F | for the function symbols. In
this talk, just relation symbols.
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Mirna Džamonja

We study objects built along such a morasses. We fix a
simplified morassM, in a given arbitrary universe V of
set theory. We may consider V and forcing extensions of
V .

K and C denote classes of structures of first order
languages, closed under isomorphisms and with given
notions of embedding ≤K and ≤C. A paired class, (C,K)
is:

1 C consists of finite structures, K consists of
structures of size ≤ ℵ1,

2 the language L(C) of C is a restriction of the
language L(K) of K,

3 If F0 ≤K F1, then F0 � L(C) ≤C F1 � L(C)

4 for every finite F ∈ K, the restriction of F � L(C) ∈ C.
The only symbols from L(C) that are interpreted on a
finite structure F are those whose arity is ≤ |F | for the
relation symbols and < |F | for the function symbols. In
this talk, just relation symbols.



Reasonable
uncountable
structures

Mirna Džamonja

The classMK=building along the morass
(joint with W. Kubiś)

Definition
LetMK denote all structures C∗ ∈ K whose domain is ω1
and which are obtained in the following way:

1 for each α < ω, we are given a structure Cα ∈ C
whose domain is θα,

2 for each α < β < ω, each function in Fα,β is a
C-embedding,

3 the structure on C∗ is defined so that for each α < ω
and f ∈ Fα,ω, the function f is a C-embedding from
dom(f ) to ran(f ) � L(C).
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MK does not depend on the morass we choose.

Theorem
LetM be a morass as fixed above and suppose that

M′ = 〈〈σα : α ≤ ω〉, 〈Gα,β : α < β ≤ ω〉〉

is another morass. DefineM′K as above, but replacing
M byM′, θα by σα and Fα,β by Gα,β.
ThenM′K =MK (up to isomorphism).
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Suppose that C is a class of finite objects and that C∗ a
morass limit of C

(considered in the same language as
the objects in C). Then:

1 There is a closed unbounded set of δ < ω1 such that,
letting Nδ = C∗ ∩ δ, we have that Age(Nδ) is a
Fraı̈ssé class and Nδ is its Fraı̈ssé limit,

2 for such δ, Age(Nδ) is the substructure closure of
{Mα : α < ω}, where Mα is the element of C on the
level θα,

3 the model C∗ is homogeneous.

An application : constructions of homogeneous graphs of
size ℵ1. A homogeneous anti-metric space of size ℵ1
(solved an open problem). A Ramsey conclusion...
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Same notation as in the previous slide

Corollary The structure C∗ is of the increasing union⋃
δ<ω1

Nδ where each Nδ is isomorphic to the Fraı̈ssé limit
of the same class.

Hence, by mixing the method of morasses and using
classes with Ramsey properties on the finite levels, we
can obtain structures that have a Ramsey property and
plus.

Examples of structures constructed by a morass often
live in one Cohen real extension example a Souslin tree
(Velleman). Other reals ?
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