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Some results

COLLOQUIUM MATHEMATICUM

Yo o o

GRAPHONS ARISING FROM
GRAPHS DEFINABLE OVER FINITE FIELDS

MINA DZAMONIA (Par) st IAN TOMASIC London)

Figure: M. Dz.-I. Tomasi¢,
Graphons Arising From Graphs
Definable over Finite Fields
Colloquium Mathematicum
169-2 (2022) pg. 269-306

B

Figure: In preparation D.
BartoSova, M. Dz, R. Patel and
L. Scow Big Ramsey Degrees
in Ultraproducts of Finite
Structures
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Infinite objects are studied in mathematics, but also in
computer sciences: Turing machines, automata, infinite
words, termination processes, “small” infinite sets.
Modelling of unbounded processes. Potential infinity.

In mathematics, especially set theory and related
subjects, we study the actual infinity. Cantor named the
|nf|n|ty No, N1, ...

In a more distant past finite and infinite were studied
mostly by trying to reflect something that was known from
one context, to the other. From the actual finite to the
actual infinite. Not that many things carry over.

Figure: Finite and Infinite Combinatorics 1991

aaaaaa

Finite and Infinite
Combinatorics in
Sets and Logic

NW. Saer, RE.
and B, Sands
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Take the process into account

A more recent approach is to look also at the how the
infinite object was built from the finite ones. So, to look
into some sort of limit of finite structures.

Examples: Fraissé limits, graphons, graphings, 1st order
convergence, morasses, ultraproducts ... ‘small infinite
sets’ (data register automata)

These limits may have one of the following three infinite
sizes:

@ Ng (the first infinite),
@ N, (the successor),
@ 2% — ¢ (the exp).

CH is like the P=NP problem for set theory.
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This basically means ‘nice’,"definable’. Descriptive set
theory starts with CH: CH is true for closed subsets of the
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This leads to a classification method in Polish (complete
separable metric spaces). Examples : R, the Cantor
space 2“- sequences of Os ans 1s or the Baire space
w¥=sequences of natural numbers. Or all sorts of
unexpected examples.

A notion of Borel reduction and completeness. A very
good method to say a problem is unclassifiable : it is
complete in some complicated enough class. Like
complexity theory in computer sciences.
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N1 is not your usual infinite

@ The analogue of the compactness theorem fails for
Ly oy

@ The analogue of Ramsey theorem fails.

@ The analogue of descriptive set theory fails even in
291,

@ The analogue of Kénig’s theorem fails. Aronszajn

tree: an uncountable tree with no uncountable chains
or antichains.

No effectiveness notion.

What to do ? Turn the tables ! Concentrate on nicely built
sets. Concentrate on a different notion of effectiveness.
Build automata.
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Questions to ask

@ Is the emptiness problem of an Aronszajn tree
automaton decidable? (and what decidable means)

@ Is every non-deterministic Aronszajn tree automaton
equivalent to a deterministic one on the same tree?

© Suppose that ¢ is a monadic formula and T an
Aronszajn tree. Is there a T-automaton equivalent to
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Positive answers would indicate that Aronszajn tree
automata give a good notion of effectiveness in <“1wjy.

So, the next step of the programme would be to use them
to produce families of nice subsets of <“1w;.
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@ Is the emptiness problem of an Aronszajn tree
automaton decidable? (and what decidable means)

@ Is every non-deterministic Aronszajn tree automaton
equivalent to a deterministic one on the same tree?

© Suppose that ¢ is a monadic formula and T an
Aronszajn tree. Is there a T-automaton equivalent to
©?
Positive answers would indicate that Aronszajn tree
automata give a good notion of effectiveness in <“1wjy.
So, the next step of the programme would be to use them
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Questions to ask

@ Is the emptiness problem of an Aronszajn tree
automaton decidable? (and what decidable means)

@ Is every non-deterministic Aronszajn tree automaton
equivalent to a deterministic one on the same tree?

© Suppose that ¢ is a monadic formula and T an
Aronszajn tree. Is there a T-automaton equivalent to

©?
Positive answers would indicate that Aronszajn tree
automata give a good notion of effectiveness in <“1wjy.

So, the next step of the programme would be to use them
to produce families of nice subsets of <“1w;.

Application Metaverse:

an automaton being built in a future universe of
mathematics (forcing), in parallel with a run being
produced on it.

u]
o)
I
i
it




Questions to ask

@ Is the emptiness problem of an Aronszajn tree
automaton decidable? (and what decidable means)

@ Is every non-deterministic Aronszajn tree automaton
equivalent to a deterministic one on the same tree?

© Suppose that ¢ is a monadic formula and T an
Aronszajn tree. Is there a T-automaton equivalent to

©?
Positive answers would indicate that Aronszajn tree
automata give a good notion of effectiveness in <“1wjy.

So, the next step of the programme would be to use them
to produce families of nice subsets of <“1w;.

Application Metaverse:

an automaton being built in a future universe of
mathematics (forcing), in parallel with a run being
produced on it. Suslin tree.
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An introduction to morasses

Morasses are a way to build objects of size X through
finite approximations.
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An introduction to morasses

Morasses are a way to build objects of size X through
finite approximations. Including a Suslin tree. Jensen
(1972) studied two cardinal transfer principles in L and to
prove them showed that morasses exist in L. They are
combinatorial structures whose purpose is to build object
of size, say, ™", using approximations of size < x
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An introduction to morasses

Morasses are a way to build objects of size X through
finite approximations. Including a Suslin tree. Jensen
(1972) studied two cardinal transfer principles in L and to
prove them showed that morasses exist in L. They are
combinatorial structures whose purpose is to build object
of size, say, k™", using approximations of size < x (that
would be called a (x, n)-morass).
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An introduction to morasses

Morasses are a way to build objects of size X through
finite approximations. Including a Suslin tree. Jensen
(1972) studied two cardinal transfer principles in L and to
prove them showed that morasses exist in L. They are
combinatorial structures whose purpose is to build object
of size, say, k™", using approximations of size < x (that
would be called a (k, n)-morass). We shall be exclusively
interested in (w, 1)-morasses.
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An introduction to morasses

Morasses are a way to build objects of size X through
finite approximations. Including a Suslin tree. Jensen
(1972) studied two cardinal transfer principles in L and to
prove them showed that morasses exist in L. They are
combinatorial structures whose purpose is to build object
of size, say, k™", using approximations of size < x (that
would be called a (k, n)-morass). We shall be exclusively
interested in (w, 1)-morasses. Moreover, we shall use a
vastly simplified framework developed by Velleman
(1984).
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An introduction to morasses

Morasses are a way to build objects of size X through
finite approximations. Including a Suslin tree. Jensen
(1972) studied two cardinal transfer principles in L and to
prove them showed that morasses exist in L. They are
combinatorial structures whose purpose is to build object
of size, say, k™", using approximations of size < x (that
would be called a (k, n)-morass). We shall be exclusively
interested in (w, 1)-morasses. Moreover, we shall use a
vastly simplified framework developed by Velleman
(1984). Such an object exists in ZFC.
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A (neat) simplified (w, 1)-morass is a system
M=, :

a <w),(Fap: a < f <w)such that
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Q for a < 8 < w, Fap s afinite set of order preserving
functions from 6,, to 63,
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a <w), (§aps: o< B < w)such that
@ for a < w, 0, is a finite number > 0, and 0,, = w1,

Q for a < B < w, Faz is afinite set of order preserving
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© J.. is a set of order preserving functions from 6,, to
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A (neat) simplified (w, 1)-morass is a system
M=l a<w),(Faps: o< <w)suchthat
@ for a < w, 0, is a finite number > 0, and 0,, = w1,

Q for a < B < w, a.pis a finite set of order preserving
functions from 6,, to 63,

© J.. is a set of order preserving functions from 6,, to
wy such that sz  F0q = wi,

Q forall o < 8 < v < w we have that
Say={fog: g€ Fapandfc sy},

@ J..+1 always contains the identity function id,, on 6,
and
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A (neat) simplified (w, 1)-morass is a system
M=l a<w),(Faps: o< <w)suchthat
@ for a < w, 0, is a finite number > 0, and 0,, = w1,

@ for a < B < w, Fap is afinite set of order preserving
functions from 6, to 6,

© J.. is a set of order preserving functions from 6,, to
wy such that sz  F0q = wi,

Q forall a < 3 < v < w we have that
Say=1fog: geFapand feFs,},

@ J..+1 always contains the identity function id,, on 6,
and either this is all, or §, o1 = {ida, ho} for some
h,, such that there is a splitting point 3 with
ha fﬁ = ida fﬁ and ha(/B) > 90&!
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A (neat) simplified (w, 1)-morass is a system
M=l a<w),(Faps: o< <w)suchthat
@ for o < w, 0, is a finite number > 0, and 6, = w1,
@ for a < B < w, Fap is afinite set of order preserving
functions from 6, to 6,

© J.. is a set of order preserving functions from 6,, to
wy such that sz  F0q = wi,

Q forall a < 3 < v < w we have that
Say=1fog: geFapand feFs,},

@ J..+1 always contains the identity function id,, on 6,
and either this is all, or §, o1 = {ida, ho} for some
h,, such that there is a splitting point 3 with
ha fﬁ = ida fﬁ and ha(IB) > 90&:

Q forevery By, 51 <wand fj € §g,,, for I <2
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A (neat) simplified (w, 1)-morass is a system
M=l a<w),(Faps: o< <w)suchthat
@ for o < w, 0, is a finite number > 0, and 6, = w1,
@ for a < B < w, Fap is afinite set of order preserving
functions from 6, to 6,
© J.. is a set of order preserving functions from 6,, to
wt such that Uyeg, f6, =uwi,

Q forall a < 3 < v < w we have that
Say={fog:gecTapgandfeFs,},

@ J..+1 always contains the identity function id,, on 6,
and either this is all, or §, o1 = {ida, ho} for some
h,, such that there is a splitting point 3 with
ha fﬁ = ida fﬁ and ha(IB) > 90&:

Q for every fy, 31 <w and f; € §a,,, for | < 2 there is
v < w with g, 1 <, afunction g € ¥, ., and
fl € g,y suchthat fi =go f/ for | < 2.
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A (neat) simplified (w, 1)-morass is a system
M=l a<w),(Faps: o< <w)suchthat
@ for o < w, 0, is a finite number > 0, and 6, = w1,
@ for a < B < w, Fap is afinite set of order preserving
functions from 6, to 6,
© J.. is a set of order preserving functions from 6,, to
wt such that Uyeg, f6, =uwi,

Q forall a < 3 < v < w we have that
Say={fog:gecTapgandfeFs,},

@ J..+1 always contains the identity function id,, on 6,
and either this is all, or §, o1 = {ida, ho} for some
h,, such that there is a splitting point 3 with
ha fﬁ = ida fﬁ and ha(IB) > 90&:

Q for every fy, 31 <w and f; € §a,,, for | < 2 there is
v < w with g, 1 <, afunction g € ¥, ., and
fl € g,y suchthat fi =go f/ for | < 2.
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We study objects built along such a morasses.
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set theory. We may consider V and forcing extensions of
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We study objects built along such a morasses. We fix a
simplified morass M, in a given arbitrary universe V of

set theory. We may consider V and forcing extensions of
V.

K and ¢ denote classes of structures of first order
languages,
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We study objects built along such a morasses. We fix a
simplified morass M, in a given arbitrary universe V of

set theory. We may consider V and forcing extensions of
V.

K and ¢ denote classes of structures of first order
languages, closed under isomorphisms and with given
notions of embedding <y and <g.
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We study objects built along such a morasses. We fix a
simplified morass M, in a given arbitrary universe V of

set theory. We may consider V and forcing extensions of
V.

K and ¢ denote classes of structures of first order
languages, closed under isomorphisms and with given
notions of embedding <x and <¢. A paired class, (¢, K)
is:
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languages, closed under isomorphisms and with given
notions of embedding <x and <¢. A paired class, (¢, K)
is:

@ ¢ consists of finite structures,
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languages, closed under isomorphisms and with given
notions of embedding <x and <¢. A paired class, (¢, K)
is:

@ ¢ consists of finite structures, K consists of
structures of size < Ny,
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We study objects built along such a morasses. We fix a
simplified morass M, in a given arbitrary universe V of

set theory. We may consider V and forcing extensions of
V.

K and ¢ denote classes of structures of first order
languages, closed under isomorphisms and with given
notions of embedding <x and <¢. A paired class, (¢, K)
is:

@ ¢ consists of finite structures, K consists of
structures of size < Ny,

@ the language £(¢) of ¢ is a restriction of the
language £(K) of I,
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We study objects built along such a morasses. We fix a
simplified morass M, in a given arbitrary universe V of

set theory. We may consider V and forcing extensions of
V.

K and ¢ denote classes of structures of first order
languages, closed under isomorphisms and with given
notions of embedding <x and <¢. A paired class, (¢, K)
is:

@ ¢ consists of finite structures, K consists of
structures of size < Ny,

@ the language £(¢) of ¢ is a restriction of the
language £(K) of I,

Q If Fp <k Fi,then Fy | £(€) <¢ Fy | £L(€)
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We study objects built along such a morasses. We fix a
simplified morass M, in a given arbitrary universe V of
set theory. We may consider V and forcing extensions of
V.

K and ¢ denote classes of structures of first order
languages, closed under isomorphisms and with given
notions of embedding <x and <¢. A paired class, (¢, K)
is:

@ ¢ consists of finite structures, K consists of
structures of size < Ny,

@ the language £(¢) of ¢ is a restriction of the
language £(K) of I,

Q If Fp <xc Fy,then Fy | £L(€) <¢ Fy | L(€)
© for every finite F € K, the restriction of F | £(¢) € €.
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We study objects built along such a morasses. We fix a
simplified morass M, in a given arbitrary universe V of
set theory. We may consider V and forcing extensions of
V.

K and ¢ denote classes of structures of first order
languages, closed under isomorphisms and with given
notions of embedding <x and <¢. A paired class, (¢, K)
is:

@ ¢ consists of finite structures, K consists of
structures of size < Ny,

@ the language £(¢) of ¢ is a restriction of the
language £(K) of I,

Q If Fp <xc Fy,then Fy | £L(€) <¢ Fy | L(€)
© for every finite F € K, the restriction of F | £(¢) € €.

The only symbols from £(¢€) that are interpreted on a
finite structure F are those whose arity is < |F| for the
relation symbols and < |F| for the function symbols.
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We study objects built along such a morasses. We fix a
simplified morass M, in a given arbitrary universe V of

set theory. We may consider V and forcing extensions of
V.

K and ¢ denote classes of structures of first order
languages, closed under isomorphisms and with given
notions of embedding <x and <¢. A paired class, (¢, K)
is:

@ ¢ consists of finite structures, X consists of
structures of size < Ny,

@ the language £(€) of ¢ is a restriction of the
language £(K) of I,
Q If Fy <k Fi,then Fy | £(€) <¢ Fy | £L(Q)
Q for every finite F € K, the restriction of F | £(¢) € €.
The only symbols from £(¢€) that are interpreted on a
finite structure F are those whose arity is < |F| for the

relation symbols and < |F| for the function symbols. In
this talk, just relation symbols.
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(joint with W. Kubis)
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The class MK=building along the morass
(joint with W. Kubis)
Definition

Let MK denote all structures C* € K whose domain is w1
and which are obtained in the following way:
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whose domain is 6,,
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Definition
Let MK denote all structures C* € K whose domain is w
and which are obtained in the following way:
@ for each a < w, we are given a structure C, € €
whose domain is 6,,

@ for each o < 8 < w, each function in §, s is a
¢-embedding,




The class MK=building along the morass
(joint with W. Kubis)
Definition
Let MK denote all structures C* € K whose domain is w1
and which are obtained in the following way:
@ for each a < w, we are given a structure C, € €
whose domain is 6,,
@ for each a < 8 < w, each function in §, s is a
¢-embedding,

© the structure on C* is defined so that for each o < w
and f € §,.., the function f is a ¢-embedding from
dom(f) to ran(f) | £(€).
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DA



M does not depend on the morass we choose.
Theorem

Let M be a morass as fixed above and suppose that

M/=<<Ua:a§w>7<ga’ﬂ: a<IBSw>>
is another morass.
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M does not depend on the morass we choose.
Theorem

Let M be a morass as fixed above and suppose that

M = (00 a<w),(Gap: a< B <w))

is another morass. Define M’K as above, but replacing
M by M, 0, by oo and Fa.g by Ga -




M does not depend on the morass we choose.
Theorem

Let M be a morass as fixed above and suppose that

M = (00 a<w),(Gap: a< B <w))

is another morass. Define M’K as above, but replacing
M by M, 0, by oo and Fa.g by Ga -

Then M'K = MK (up to isomorphism).
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morass limit of €
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the objects in €). Then:
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@ There is a closed unbounded set of § < wq such that,
letting N5 = C* N §, we have that Age(Ns) is a
Fraissé class and N is its Fraissé limit,
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Suppose that € is a class of finite objects and that C* a

morass limit of € (considered in the same language as
the objects in €). Then:

@ There is a closed unbounded set of § < wq such that,
letting N5 = C* N §, we have that Age(Ns) is a
Fraissé class and N is its Fraissé limit,

@ for such b, Age(Ns) is the substructure closure of
{M,, : a« < w}, where
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Theorem

Suppose that € is a class of finite objects and that C* a
morass limit of € (considered in the same language as
the objects in €). Then:

@ There is a closed unbounded set of § < wq such that,
letting N5 = C* N §, we have that Age(Ns) is a
Fraissé class and N is its Fraissé limit,

@ for such b, Age(Ns) is the substructure closure of

{M,, : o <w}, where M, is the element of € on the
level 4.,
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Theorem

Suppose that € is a class of finite objects and that C* a

morass limit of € (considered in the same language as
the objects in €). Then:

@ There is a closed unbounded set of § < wy such that,
letting N5 = C* N §, we have that Age(Ns) is a
Fraissé class and N; is its Fraissé limit,

@ for such b, Age(Ns) is the substructure closure of
{M, : a < w}, where M, is the element of € on the
level 4.,

© the model C* is homogeneous.
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Theorem

Suppose that € is a class of finite objects and that C* a

morass limit of € (considered in the same language as
the objects in €). Then:

@ There is a closed unbounded set of § < wy such that,
letting N5 = C* N §, we have that Age(Ns) is a
Fraissé class and N; is its Fraissé limit,

@ for such b, Age(Ns) is the substructure closure of
{M, : a < w}, where M, is the element of € on the
level 4.,

© the model C* is homogeneous.

An application : constructions of homogeneous graphs of
size Nj.
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Theorem

Suppose that € is a class of finite objects and that C* a

morass limit of € (considered in the same language as
the objects in €). Then:

@ There is a closed unbounded set of § < wy such that,
letting N5 = C* N §, we have that Age(Ns) is a
Fraissé class and N; is its Fraissé limit,

@ for such b, Age(Ns) is the substructure closure of
{M, : a < w}, where M, is the element of € on the
level 4.,

© the model C* is homogeneous.

An application : constructions of homogeneous graphs of
size N1. A homogeneous anti-metric space of size Ry
(solved an open problem). A Ramsey conclusion...
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Same notation as in the previous slide

of the same class.

Corollary The structure C* is of the increasing union
Us<.w, Ns where each Nj is isomorphic to the Fraissé limit




Same notation as in the previous slide

Corollary The structure C* is of the increasing union
Us<.w, Ns where each Nj is isomorphic to the Fraissé limit
of the same class.

Hence, by mixing the method of morasses and using
classes with Ramsey properties on the finite levels, we
can obtain structures that have a Ramsey property and
plus.
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Corollary The structure C* is of the increasing union
Us<.w, Ns where each Nj is isomorphic to the Fraissé limit
of the same class.

Hence, by mixing the method of morasses and using
classes with Ramsey properties on the finite levels, we
can obtain structures that have a Ramsey property and
plus.

Examples of structures constructed by a morass often
live in one Cohen real extension
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Same notation as in the previous slide

Corollary The structure C* is of the increasing union
Us<.w, Ns where each Nj is isomorphic to the Fraissé limit
of the same class.

Hence, by mixing the method of morasses and using
classes with Ramsey properties on the finite levels, we
can obtain structures that have a Ramsey property and
plus.

Examples of structures constructed by a morass often
live in one Cohen real extension example a Souslin tree
(Velleman).
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Same notation as in the previous slide

Corollary The structure C* is of the increasing union
Us<.w, Ns where each Nj is isomorphic to the Fraissé limit
of the same class.

Hence, by mixing the method of morasses and using
classes with Ramsey properties on the finite levels, we
can obtain structures that have a Ramsey property and
plus.

Examples of structures constructed by a morass often
live in one Cohen real extension example a Souslin tree
(Velleman). Other reals ?
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