Davies's theorem and the coloring number of graphs

Péter Komjáth Eötvös U. Budapest

Advances in Set Theory July 10–14 2022

Theorem. (Roy O. Davies, 1974) If CH holds, $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, then there are functions $g_n, h_n : \mathbb{R} \to \mathbb{R}$ that

$$F(x,y) = \sum_{n=0}^{\infty} g_n(x)h_n(y).$$

・ 回 と ・ ヨ と ・ ヨ と

Davies' construction had the property that all sums are finite (on the RHS all but finitely many terms are zero).

He showed that this stronger form is equivalent to CH. (Considering $F(x, y) = e^{xy}$.)

(Shelah) The original form of Davies's theorem is both consistent and independent with non-CH.

A graph is a pair (V, X) where V is a set (vertices), X is a set consisting 2-element subsets of V (edges).

Definition. A graph (V, X) is *Davies* if the following holds: if $F : X \to \mathbb{R}$, then there are functions $g_v : \omega \to \mathbb{R}$ $(v \in V)$ such that

$$F(v,w)=\sum_{n=0}^{\infty}g_{v}(n)g_{w}(n)\quad (\{v,w\}\in X).$$

Davies: if CH holds, then $K_{c,c}$ is Davies. or better: K_{ω_1,ω_1} is Davies without any condition.

- ∢ ≣ >

Other results

(Shelah, 1997) If $MA(\sigma$ -centered) holds, then $K_{c,c}$ is Davies.

(Shelah, 1997) $K_{c,c}$ is not Davies if c or more Cohen reals are added.

Other results

(Roslanowski–Shelah, in 'The yellow cake') $K_{c,c}$ is Davies does not imply $MA(\sigma$ -centered).

- ∢ ⊒ ⊳

Defintion. (Erdős–Hajnal, 1966) The *coloring number of* (V, X), Col(V, X) is the least cardinal μ s.t. there is a well ordering < of V, that each vertex is joined to $< \mu$ smaller (under <) vertices.

Notice that $Chr(X) \leq Col(X)$.

The following are equivalent: (a) $\operatorname{Col}(V, X) > \mu^+$ (b) if $f: V \to [V]^{\mu}$, then there is $\{x, y\} \in X$, such that $x \notin f(y), y \notin f(x)$.

(Shelah, 1975) If (V, X) is a graph, $\lambda = |V|$ is singular, μ is a cardinal, all subgraphs (W, Y) of Xwith $|W| < \lambda$ have $\operatorname{Col}(W, Y) \le \mu$, then $\operatorname{Col}(V, X) \le \mu$.

・ 同 ト ・ 三 ト ・ 三 ト

Let X be a bipartite graph on $A \cup B$, $|A| = \lambda$, $|B| = \lambda^+$, and each $x \in B$ is joined to μ vertices in A (λ, μ infinite cardinals). Then $Col(X) > \mu$.

マロト イヨト イヨト

Results

Theorem. If (V, X) is a graph, $|V| \le c$, $Col(X) \le \omega_1$ then X is Davies.

・ 同下 ・ ヨト ・ ヨト

Theorem. If Chr(X) > c, then (V, X) is not Davies.

Proof Try F(x, y) = -1 ($\{x, y\} \in X$). If functions $\{g_v : v \in V\}$ are given, as Chr(X) > c, there are $v \neq w \in V$, with $g_v = g_w$, $\{v, w\} \in X$. Then $\sum_n g_v(n)g_w(n) = \sum_n g_v(n)^2 \ge 0$, contradiction.

< A > < B > <

Theorem. It is consistent that $c = \aleph_3$ and if (V, X) is a graph with $\operatorname{Col}(X) = |X| = \aleph_2$, then (V, X) is not Davies.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem. If the existence of a supercompact cardinal is consistent then it is also consistent that $c = \aleph_3$ and every graph X with $\operatorname{Col}(X) > \omega_1$ and any size is not Davies.

Results

Thank you for your patience!

A 3 >