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Assuming AD, many cardinals have infinite exponent partition
properties.

We say κ → (κ)λ if for all partitions P : [κ]λ → 2, there is a
homogeneous set H ⊆ κ of size κ. That is, P � [H]λ is constant.

We say f : λ→ κ is of the correct type if it is increasing,
everywhere discontinuous, and of uniform cofinality ω.

We say κ
c.u.b .
−→ (κ)λ if for all partitions P of the function from λ to κ

of the correct type, there is a c.u.b. C ⊆ κ which is homogeneous
for P.
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Fact
The two forms of the partition property are closely related:

I κ
c.u.b .
−→ (κ)λ implies κ → (κ)λ.

I κ → (κ)ω·λ implies κ
c.u.b .
−→ (κ)λ.

We say κ has the strong partition property if κ → (κ)κ, and κ has
the weak partition property if ∀λ < κ κ → (κ)λ.

The two variations of the partition property agree for κ having the
weak or strong partition property.

Let [κ]λ∗ denote the collection of functions from λ to κ of the correct
type. We henceforth adopt the c.u.b. version of the partition
relations.
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Assuming AD we have:
I The κ having the strong partition property are cofinal in Θ.
I ω1 has the partition property, and more generally all the δ1

2n+1
have the strong partition property.

I ω2 has the weak partition propery, and more generally all the
δ1

2n+2 have the weak partition property.

If κ → (κ)λ then we have a natural measure µλκ on [κ]λ∗ , the
functions from λ to κ of the correct type.
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Fact
If κ → (κ)λ, then the measure µλκ is κ-complete.

If κ has the strong partition property and ν is a measue on κ, then
there is a natural measure S(ν) on jν(κ) induced by the measure
µκκ and the measure ν.

We can also define analogs S̃(ν) using functions of other uniform
cofinalities.

For example, we have
I S(W1

1 ) is the ω-cofinal normal measure on ω2

I S̃(W1
1 ) is the ω1-cofinal normal measure on ω2 (use f with

f(α) of uniform cofinality α).
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A result of Martin says that for any measure ν, jν(κ) is a cardinal,
and for any normal measure ν, jν(κ) is regular.

When ν is normal, the measure S(ν) is monotonic: if
f : jν(κ)→ On, then there is a measure one set A ⊆ jν(κ) such that
f � A is monotonically increasing.

The proof uses a partiton of pairs (f , g) where
f(α) < g(α) < f(α + 1) and a “sliding argument.”

The proof does not immediately extend to more general ν. More
generally, we can ask if the measure µλκ are themselves monotonic.
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Theorem
Suppose κ → (κ)λ. Then the measure µλκ is monotonic. That is if
Φ: [κ]λ∗ → On then there is a c.u.b. C ⊆ κ such that if f , g ∈ [C]λ∗
and f(α) ≤ g(α) for all α < λ, then Φ(f) ≤ Φ(g).

As a corollary we have:

Corollary
If κ has the strong partition property, and ν is a measure on κ, then
the measure S(ν) on jν(κ) is monotonic.
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We first prove the following special case of the theorem. We
assume κ → (κ)κ.

Lemma
If Φ: [κ]κ∗ → On then there is a c.u.b. C ⊆ κ such that if f , g ∈ [C]κ∗
and for all α < κ we have:

1. f(α) ≤ g(α)

2. g(α) , supβ<α f(β) for all limit β < κ.

3. f(α) , supβ<α g(β) for all limit β < κ.

then Φ(f) ≤ Φ(g).
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We use functions of “indecomposable type.” Fix I : κ → κ

increasing, discontinuous, with range in the indecomposable
ordinals.

For h ∈ [κ]κ∗, let main(h)(α) = h(I(α)). Note that main(h) is also
of the correct type.

P: partition h ∈ [κ]κ∗ according to whether

∀p ∈ [h[κ]]κ∗ Φ(main(h)) ≤ Φ(main(p))

By wellfoundedness, on the homogeneous side of the partition the
stated property holds. Fix C0 homogeneous for P and let C1 ⊆ C0

be the closure points of C0.
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Fix f , g ∈ [C1]κ∗ satisfying (1)-(3), and we show that Φ(f) ≤ Φ(g).

We define two functions h, p with h ∈ [C0]κ∗, p ∈ [h[κ]]κ∗,
main(h) = f , and main(p) = g.

Let σβ be least so that g(σβ) > f(β). So σβ ≤ β + 1.

Proceeding inductively on α we assume:

I For all β < α, h � (I(β) + 1) has been defined (of correct
type) and h(I(β)) = f(β).

I For all β < α, for all η < σβ, p � (I(η) + 1) has been defined
and p(I(η)) = g(η).
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f(α)sup f � α

sup g � ια g(ια) g(σα)

A

I ια = supβ<α σβ ≤ α.
I A = {β : sup f � α < g(β) < f(α)}, o.t.(A) = ξ.
I If A , ∅ then ια < α.
I sup f � α < g(ια) and sup(A) < f(α) from our assumptions.
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Let

δ0 = sup{I(β) + 1 : β < α}

τ0 = sup{I(β) + 1 : β < ια}

So we have defined h � δ0, p � τ0, and sup h � δ0 = sup f � α,
sup p � τ0 = sup g � ια.

For ν < ξ, set:

δν = sup{δ0 + I(ια + η) + 1 : η < ν}

εν = δ0 + I(ια + ν) = δν + I(ια + ν)

τν = sup{τ0 + I(ια + η) + 1 : η < ν}

µν = τ0 + I(ια + ν) = τν + I(ια + ν)
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Assume h � δν, p � τν have been defined and
sup h � δν = sup p � τν = sup g � (ια + ν).

f(α)sup f � α

sup g � ια g(ια)
g(σα)

g(ια + ν)

For β < I(ια + ν), define:

h(δν + β) = p(τν + β) = nextω·(β+1)
C0

(sup h � δν)
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This defines h � εν, p � µν, and we then set
h(εν) = p(µν) = g(ια + ν).

Let δ = sup{εν + 1 : ν < ξ}, τ = sup{µν + 1 : ν < ξ}.

So, h � δ, p � τ have been defined and
sup f � δ = sup g � τ = sup g � (ια + ξ).

I Note that τ ≤ δ ≤ δ0 + sup(I � α) + 1 < δ0 + I(α) = I(α).
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f(α)sup f � α

sup g � ια g(σα)g(`)

Let ` = min(κ \ A) = ια + ξ. We could have g(`) > f(α) or
g(`) = f(α).

If g(`) > f(α), set for β < I(α): h(δ + β) = nextω·(β+1)
C0

(sup h � δ)

and set h(I(α)) = f(α).

If g(`) = f(α) and ` = α, set for β < I(α),
h(δ + β) = nextω·(β+1)

C0
(sup h � δ),

p(τ + β) = nextω·(β+1)
C0

(sup p � τ),
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If g(`) = f(α) and ` < α, set for β < I(`),

h(δ + β) = nextω·(β+1)
C0

(sup h � δ),

p(τ + β) = nextω·(β+1)
C0

(sup p � τ),

and for β < I(α) set

h(δ + I(`) + β) = nextω·(β+1)
C0

(sup h � I(`)),

as shown.

Set h(I(α)) = f(α), p(I(`)) = g(`) = f(α).
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General Case

We now consider the general case, without the restrictions on f
and g.

Let C0 be homogeneous for the previous restricted version, and C1

the closure points of C0.

Fix f , g ∈ [C1]κ∗ with f(α) ≤ g(α) for all α < κ.

I We first lower g to get k with f ≤ k ≤ g and such that (k , g)
satisfies the assumptions and (f , k) satisfies k(α) is not of the
form sup f � β for limit β.

I We then define h with f ≤ h ≤ k where (h, k) and (f , h) satisfy
the assumptions.
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Definition of k :

Let (ηξ, νξ) enumerate the pairs with g(ηξ) = sup f � νξ.

If α is not of the form ηξ, let k(α) = g(α).

sup g � ηξ g(ηξ)

sup f � µξ f(µξ) f(µξ + 1) sup f � νξ f(νξ)

k(ηξ)

We have ηξ ≤ µξ < µξ + 1 < νξ.
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Definition of h:

Let (ηξ, νξ) enumerate the pairs with f(νξ) = sup k � ηξ.

sup k � µξ k(µξ) sup k � ηξ k(ηξ)

h(µξ) sup h � ηξ

sup f � νξ f(νξ)

µξ is least so that k(µξ) > sup f � νξ.
µξ < ηξ ≤ νξ.
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Continuity

Theorem
Suppose ε < κ, cof(ε) = ω, and κ → (κ)ε·ε . Then for any
Φ: [κ]ε∗ → On, there is a c.u.b. C ⊆ κ and a δ < ε such that if
f , g ∈ [C]ε∗ with f � δ = g � δ and sup(f) = sup(g), then
Φ(f) = Φ(g).

We have the following application.

Theorem
Suppose κ → (κ)<κ. Then for all λ < κ, there does not exist an
injection of κ<κ into λOn.
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We prove the application from the theorem.

Proof: Suppose Φ: κ<κ → λOn is injective.

For each γ < λ and ε, κ, Φ induces Φε
γ : [κ]ε∗ → On by

Φε
γ(f) = Φ(f)(γ)

By the Theorem, ∀γ < λ ∀ε < κ ∃C ⊆ κ ∃δ < ε for all f , g ∈ [C]ε∗, if
sup f = sup g and f � δ = g � δ, then Φε

γ(f) = Φε
γ(g).

Let δεγ < ε be the least such δ.
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For each γ < λ, let δγ < κ be such that for almost all ε of cofinality
ω, we have δεγ = δγ.

Let δ∗ = supγ<λ δγ < κ.

For each γ < λ, there is an ω-club in κ of ε such that δεγ = δγ < δ
∗.

By additivity of the club filter, we may fix an ε∗ < κ so that for all
γ < λ, δε

∗

γ < δ∗.

So, for all γ < λ there is a club C ⊆ κ such that for all f , g ∈ [C]ε
∗

∗

with sup f = sup g and f � δ∗ = g � δ∗ we have Φ(f)(γ) = Φ(g)(γ).

We need a variation of the additivity argument.
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If we find a c.u.b. C ⊆ κ that works for all γ < λ, then we have a
contradiction:

Consider f , g ∈ [C]ε
∗

∗ with sup f = sup g, f � δ∗ = g � δ∗ and with
f , g.

Additivity argument.

For all γ < λ, ∀∗f ∈ [κ]ε
∗

∗ if g � δ∗ = f � δ∗, and g v f , then
Φ(g)(γ) = Φ(g)(γ).

By the additivity of the function space measure, there is a c.u.b.
C ⊆ κ such that ∀γ < λ ∀f ∈ [C]ε

∗

∗ if g � δ∗ = f � δ∗, and g v f , then
Φ(f)(γ) = Φ(g)(γ).

This c.u.b. C ⊆ κ works. If f , g ∈ [C]ε
∗

∗ , sup f � δ∗ = sup g � δ∗, and
sup(f) = sup(g), then there is an h ∈ [C]ε

∗

∗ with h � δ∗ = f , g � δ∗,
and with f v h, g v h.
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