Partition Properties and Cardinalities

Steve Jackson joint with William Chan and Nam Trang

July 14, 2022 Advances in Set theory Hebrew University

We say $\kappa \to (\kappa)^{\lambda}$ if for all partitions $\mathcal{P} \colon [\kappa]^{\lambda} \to 2$, there is a homogeneous set $H \subseteq \kappa$ of size κ . That is, $\mathcal{P} \upharpoonright [H]^{\lambda}$ is constant.

We say $f: \lambda \to \kappa$ is of the correct type if it is increasing, everywhere discontinuous, and of uniform cofinality ω .

We say $\kappa \xrightarrow{c.u.b.} (\kappa)^{\lambda}$ if for all partitions \mathcal{P} of the function from λ to κ of the correct type, there is a c.u.b. $C \subseteq \kappa$ which is homogeneous for \mathcal{P} .

We say $\kappa \to (\kappa)^{\lambda}$ if for all partitions $\mathcal{P} \colon [\kappa]^{\lambda} \to 2$, there is a homogeneous set $H \subseteq \kappa$ of size κ . That is, $\mathcal{P} \upharpoonright [H]^{\lambda}$ is constant.

We say $f: \lambda \to \kappa$ is of the correct type if it is increasing, everywhere discontinuous, and of uniform cofinality ω .

We say $\kappa \xrightarrow{c.u.b.} (\kappa)^{\lambda}$ if for all partitions \mathcal{P} of the function from λ to κ of the correct type, there is a c.u.b. $C \subseteq \kappa$ which is homogeneous for \mathcal{P} .

We say $\kappa \to (\kappa)^{\lambda}$ if for all partitions $\mathcal{P} \colon [\kappa]^{\lambda} \to 2$, there is a homogeneous set $H \subseteq \kappa$ of size κ . That is, $\mathcal{P} \upharpoonright [H]^{\lambda}$ is constant.

We say $f: \lambda \to \kappa$ is of the correct type if it is increasing, everywhere discontinuous, and of uniform cofinality ω .

We say $\kappa \xrightarrow{c.u.b.} (\kappa)^{\lambda}$ if for all partitions \mathcal{P} of the function from λ to κ of the correct type, there is a c.u.b. $C \subseteq \kappa$ which is homogeneous for \mathcal{P} .

イロト 不得 トイヨト イヨト

э

We say $\kappa \to (\kappa)^{\lambda}$ if for all partitions $\mathcal{P} \colon [\kappa]^{\lambda} \to 2$, there is a homogeneous set $H \subseteq \kappa$ of size κ . That is, $\mathcal{P} \upharpoonright [H]^{\lambda}$ is constant.

We say $f: \lambda \to \kappa$ is of the correct type if it is increasing, everywhere discontinuous, and of uniform cofinality ω .

We say $\kappa \xrightarrow{c.u.b.} (\kappa)^{\lambda}$ if for all partitions \mathcal{P} of the function from λ to κ of the correct type, there is a c.u.b. $C \subseteq \kappa$ which is homogeneous for \mathcal{P} .

イロト イポト イヨト イヨト

The two forms of the partition property are closely related:

•
$$\kappa \stackrel{c.u.b.}{\longrightarrow} (\kappa)^{\lambda}$$
 implies $\kappa \to (\kappa)^{\lambda}$.

•
$$\kappa \to (\kappa)^{\omega \cdot \lambda}$$
 implies $\kappa \stackrel{c.u.b.}{\longrightarrow} (\kappa)^{\lambda}$.

We say κ has the strong partition property if $\kappa \to (\kappa)^{\kappa}$, and κ has the weak partition property if $\forall \lambda < \kappa \kappa \to (\kappa)^{\lambda}$.

The two variations of the partition property agree for κ having the weak or strong partition property.

Let $[\kappa]^{\lambda}_{*}$ denote the collection of functions from λ to κ of the correct type. We henceforth adopt the c.u.b. version of the partition relations.

イロト イポト イヨト イヨト

The two forms of the partition property are closely related:

•
$$\kappa \stackrel{c.u.b.}{\longrightarrow} (\kappa)^{\lambda}$$
 implies $\kappa \to (\kappa)^{\lambda}$.

•
$$\kappa \to (\kappa)^{\omega \cdot \lambda}$$
 implies $\kappa \stackrel{c.u.b.}{\longrightarrow} (\kappa)^{\lambda}$.

We say κ has the strong partition property if $\kappa \to (\kappa)^{\kappa}$, and κ has the weak partition property if $\forall \lambda < \kappa \kappa \to (\kappa)^{\lambda}$.

The two variations of the partition property agree for κ having the weak or strong partition property.

Let $[\kappa]^{\lambda}_{*}$ denote the collection of functions from λ to κ of the correct type. We henceforth adopt the c.u.b. version of the partition relations.

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

э

The two forms of the partition property are closely related:

•
$$\kappa \xrightarrow{c.u.b.} (\kappa)^{\lambda}$$
 implies $\kappa \to (\kappa)^{\lambda}$.
• $\kappa \to (\kappa)^{\omega \cdot \lambda}$ implies $\kappa \xrightarrow{c.u.b.} (\kappa)^{\lambda}$.

We say κ has the strong partition property if $\kappa \to (\kappa)^{\kappa}$, and κ has the weak partition property if $\forall \lambda < \kappa \kappa \to (\kappa)^{\lambda}$.

The two variations of the partition property agree for κ having the weak or strong partition property.

Let $[\kappa]^{\lambda}_{*}$ denote the collection of functions from λ to κ of the correct type. We henceforth adopt the c.u.b. version of the partition relations.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The two forms of the partition property are closely related:

•
$$\kappa \xrightarrow{c.u.b.} (\kappa)^{\lambda}$$
 implies $\kappa \to (\kappa)^{\lambda}$.
• $\kappa \to (\kappa)^{\omega \cdot \lambda}$ implies $\kappa \xrightarrow{c.u.b.} (\kappa)^{\lambda}$.

We say κ has the strong partition property if $\kappa \to (\kappa)^{\kappa}$, and κ has the weak partition property if $\forall \lambda < \kappa \kappa \to (\kappa)^{\lambda}$.

The two variations of the partition property agree for κ having the weak or strong partition property.

Let $[\kappa]^{\lambda}_{*}$ denote the collection of functions from λ to κ of the correct type. We henceforth adopt the c.u.b. version of the partition relations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Assuming AD we have:

- The κ having the strong partition property are cofinal in Θ .
- ω_1 has the partition property, and more generally all the δ_{2n+1}^1 have the strong partition property.
- ω_2 has the weak partition propery, and more generally all the δ_{2n+2}^1 have the weak partition property.

イロト イポト イヨト イヨト

э

If $\kappa \to (\kappa)^{\lambda}$ then we have a natural measure μ_{κ}^{λ} on $[\kappa]_{*}^{\lambda}$, the functions from λ to κ of the correct type.

Assuming AD we have:

- The κ having the strong partition property are cofinal in Θ .
- ω_1 has the partition property, and more generally all the δ_{2n+1}^1 have the strong partition property.
- ω_2 has the weak partition propery, and more generally all the δ_{2n+2}^1 have the weak partition property.

3

If $\kappa \to (\kappa)^{\lambda}$ then we have a natural measure μ_{κ}^{λ} on $[\kappa]_{*}^{\lambda}$, the functions from λ to κ of the correct type.

If κ has the strong partition property and ν is a measue on κ , then there is a natural measure $S(\nu)$ on $j_{\nu}(\kappa)$ induced by the measure μ_{κ}^{κ} and the measure ν .

We can also define analogs $\tilde{S}(v)$ using functions of other uniform cofinalities.

For example, we have

- $S(W_1^1)$ is the ω -cofinal normal measure on ω_2
- $\tilde{S}(W_1^1)$ is the ω_1 -cofinal normal measure on ω_2 (use *f* with $f(\alpha)$ of uniform cofinality α).

- 4 回 ト 4 三 ト

If κ has the strong partition property and ν is a measue on κ , then there is a natural measure $S(\nu)$ on $j_{\nu}(\kappa)$ induced by the measure μ_{κ}^{κ} and the measure ν .

We can also define analogs $\tilde{S}(v)$ using functions of other uniform cofinalities.

For example, we have

- $S(W_1^1)$ is the ω -cofinal normal measure on ω_2
- $\tilde{S}(W_1^1)$ is the ω_1 -cofinal normal measure on ω_2 (use *f* with $f(\alpha)$ of uniform cofinality α).

A (1) < A (2) < A (2) </p>

If κ has the strong partition property and ν is a measue on κ , then there is a natural measure $S(\nu)$ on $j_{\nu}(\kappa)$ induced by the measure μ_{κ}^{κ} and the measure ν .

We can also define analogs $\tilde{S}(v)$ using functions of other uniform cofinalities.

For example, we have

- $S(W_1^1)$ is the ω -cofinal normal measure on ω_2
- $\tilde{S}(W_1^1)$ is the ω_1 -cofinal normal measure on ω_2 (use *f* with $f(\alpha)$ of uniform cofinality α).

(4 回) (4 回) (4 回)

If κ has the strong partition property and ν is a measue on κ , then there is a natural measure $S(\nu)$ on $j_{\nu}(\kappa)$ induced by the measure μ_{κ}^{κ} and the measure ν .

We can also define analogs $\tilde{S}(v)$ using functions of other uniform cofinalities.

For example, we have

- $S(W_1^1)$ is the ω -cofinal normal measure on ω_2
- $\tilde{S}(W_1^1)$ is the ω_1 -cofinal normal measure on ω_2 (use *f* with $f(\alpha)$ of uniform cofinality α).

(人間) とくま とくま とう

When ν is normal, the measure $S(\nu)$ is monotonic: if $f: j_{\nu}(\kappa) \to On$, then there is a measure one set $A \subseteq j_{\nu}(\kappa)$ such that $f \upharpoonright A$ is monotonically increasing.

The proof uses a partiton of pairs (f, g) where $f(\alpha) < g(\alpha) < f(\alpha + 1)$ and a "sliding argument."

The proof does not immediately extend to more general ν . More generally, we can ask if the measure μ_{κ}^{λ} are themselves monotonic.

A (1) < A (2) < A (2) </p>

When ν is normal, the measure $S(\nu)$ is monotonic: if $f: j_{\nu}(\kappa) \to On$, then there is a measure one set $A \subseteq j_{\nu}(\kappa)$ such that $f \upharpoonright A$ is monotonically increasing.

The proof uses a partiton of pairs (f, g) where $f(\alpha) < g(\alpha) < f(\alpha + 1)$ and a "sliding argument."

The proof does not immediately extend to more general ν . More generally, we can ask if the measure μ_{κ}^{λ} are themselves monotonic.

When ν is normal, the measure $S(\nu)$ is monotonic: if $f: j_{\nu}(\kappa) \to On$, then there is a measure one set $A \subseteq j_{\nu}(\kappa)$ such that $f \upharpoonright A$ is monotonically increasing.

The proof uses a partiton of pairs (f, g) where $f(\alpha) < g(\alpha) < f(\alpha + 1)$ and a "sliding argument."

The proof does not immediately extend to more general ν . More generally, we can ask if the measure μ_{κ}^{λ} are themselves monotonic.

(人間) トイヨト イヨト

When ν is normal, the measure $S(\nu)$ is monotonic: if $f: j_{\nu}(\kappa) \to On$, then there is a measure one set $A \subseteq j_{\nu}(\kappa)$ such that $f \upharpoonright A$ is monotonically increasing.

The proof uses a partiton of pairs (f, g) where $f(\alpha) < g(\alpha) < f(\alpha + 1)$ and a "sliding argument."

The proof does not immediately extend to more general v. More generally, we can ask if the measure μ_{κ}^{λ} are themselves monotonic.

(4回) (4回) (4回)

Suppose $\kappa \to (\kappa)^{\lambda}$. Then the measure μ_{κ}^{λ} is monotonic. That is if $\Phi : [\kappa]_{*}^{\lambda} \to On$ then there is a c.u.b. $C \subseteq \kappa$ such that if $f, g \in [C]_{*}^{\lambda}$ and $f(\alpha) \leq g(\alpha)$ for all $\alpha < \lambda$, then $\Phi(f) \leq \Phi(g)$.

As a corollary we have:

Corollary

If κ has the strong partition property, and ν is a measure on κ , then the measure $S(\nu)$ on $j_{\nu}(\kappa)$ is monotonic.

A (10) N (10)

Suppose $\kappa \to (\kappa)^{\lambda}$. Then the measure μ_{κ}^{λ} is monotonic. That is if $\Phi : [\kappa]_{*}^{\lambda} \to On$ then there is a c.u.b. $C \subseteq \kappa$ such that if $f, g \in [C]_{*}^{\lambda}$ and $f(\alpha) \leq g(\alpha)$ for all $\alpha < \lambda$, then $\Phi(f) \leq \Phi(g)$.

As a corollary we have:

Corollary

If κ has the strong partition property, and ν is a measure on κ , then the measure $S(\nu)$ on $j_{\nu}(\kappa)$ is monotonic.

A (10) N (10)

Suppose $\kappa \to (\kappa)^{\lambda}$. Then the measure μ_{κ}^{λ} is monotonic. That is if $\Phi : [\kappa]_{*}^{\lambda} \to On$ then there is a c.u.b. $C \subseteq \kappa$ such that if $f, g \in [C]_{*}^{\lambda}$ and $f(\alpha) \leq g(\alpha)$ for all $\alpha < \lambda$, then $\Phi(f) \leq \Phi(g)$.

As a corollary we have:

Corollary

If κ has the strong partition property, and ν is a measure on κ , then the measure $S(\nu)$ on $j_{\nu}(\kappa)$ is monotonic.

くぼう くほう くほう

We first prove the following special case of the theorem. We assume $\kappa \to (\kappa)^{\kappa}$.

Lemma

If $\Phi : [\kappa]_*^{\kappa} \to On$ then there is a c.u.b. $C \subseteq \kappa$ such that if $f, g \in [C]_*^{\kappa}$ and for all $\alpha < \kappa$ we have:

- 1. $f(\alpha) \leq g(\alpha)$
- 2. $g(\alpha) \neq \sup_{\beta < \alpha} f(\beta)$ for all limit $\beta < \kappa$.
- 3. $f(\alpha) \neq \sup_{\beta < \alpha} g(\beta)$ for all limit $\beta < \kappa$.

then $\Phi(f) \leq \Phi(g)$.

We first prove the following special case of the theorem. We assume $\kappa \to (\kappa)^{\kappa}$.

Lemma

If $\Phi : [\kappa]_*^{\kappa} \to On$ then there is a c.u.b. $C \subseteq \kappa$ such that if $f, g \in [C]_*^{\kappa}$ and for all $\alpha < \kappa$ we have:

1. $f(\alpha) \leq g(\alpha)$ 2. $g(\alpha) \neq \sup_{\beta < \alpha} f(\beta)$ for all limit $\beta < \kappa$. 3. $f(\alpha) \neq \sup_{\beta < \alpha} g(\beta)$ for all limit $\beta < \kappa$. then $\Phi(f) \leq \Phi(g)$.

A (10) × A (10) ×

э

For $h \in [\kappa]_*^{\kappa}$, let main $(h)(\alpha) = h(\mathcal{I}(\alpha))$. Note that main(h) is also of the correct type.

 \mathcal{P} : partition $h \in [\kappa]^{\kappa}_*$ according to whether

 $\forall p \in [h[\kappa]]_*^{\kappa} \Phi(\operatorname{main}(h)) \leq \Phi(\operatorname{main}(p))$

By wellfoundedness, on the homogeneous side of the partition the stated property holds. Fix C_0 homogeneous for \mathcal{P} and let $C_1 \subseteq C_0$ be the closure points of C_0 .

イロト イポト イヨト イヨト

For $h \in [\kappa]_*^{\kappa}$, let main $(h)(\alpha) = h(\mathcal{I}(\alpha))$. Note that main(h) is also of the correct type.

 \mathcal{P} : partition $h \in [\kappa]^{\kappa}_*$ according to whether

 $\forall p \in [h[\kappa]]^{\kappa}_{*} \Phi(\operatorname{main}(h)) \leq \Phi(\operatorname{main}(p))$

By wellfoundedness, on the homogeneous side of the partition the stated property holds. Fix C_0 homogeneous for \mathcal{P} and let $C_1 \subseteq C_0$ be the closure points of C_0 .

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

э

For $h \in [\kappa]_*^{\kappa}$, let main $(h)(\alpha) = h(\mathcal{I}(\alpha))$. Note that main(h) is also of the correct type.

 \mathcal{P} : partition $h \in [\kappa]^{\kappa}_*$ according to whether

 $\forall p \in [h[\kappa]]^{\kappa}_{*} \Phi(\operatorname{main}(h)) \leq \Phi(\operatorname{main}(p))$

By wellfoundedness, on the homogeneous side of the partition the stated property holds. Fix C_0 homogeneous for \mathcal{P} and let $C_1 \subseteq C_0$ be the closure points of C_0 .

э

For $h \in [\kappa]_*^{\kappa}$, let main $(h)(\alpha) = h(\mathcal{I}(\alpha))$. Note that main(h) is also of the correct type.

 \mathcal{P} : partition $h \in [\kappa]^{\kappa}_*$ according to whether

 $\forall p \in [h[\kappa]]_*^{\kappa} \Phi(\operatorname{main}(h)) \leq \Phi(\operatorname{main}(p))$

By wellfoundedness, on the homogeneous side of the partition the stated property holds. Fix C_0 homogeneous for \mathcal{P} and let $C_1 \subseteq C_0$ be the closure points of C_0 .

Fix $f, g \in [C_1]_*^{\kappa}$ satisfying (1)-(3), and we show that $\Phi(f) \leq \Phi(g)$.

We define two functions h, p with $h \in [C_0]_*^{\kappa}$, $p \in [h[\kappa]]_*^{\kappa}$, main(h) = f, and main(p) = g.

Let σ_{β} be least so that $g(\sigma_{\beta}) > f(\beta)$. So $\sigma_{\beta} \leq \beta + 1$.

Proceeding inductively on α we assume:

- For all β < α, h ↾ (I(β) + 1) has been defined (of correct type) and h(I(β)) = f(β).</p>
- For all β < α, for all η < σ_β, p ↾ (I(η) + 1) has been defined and p(I(η)) = g(η).

イロト イポト イヨト イヨト

▶ sup $f \upharpoonright \alpha < g(\iota_{\alpha})$ and sup $(A) < f(\alpha)$ from our assumptions.

Let

$$\delta_0 = \sup\{\mathcal{I}(\beta) + 1 : \beta < \alpha\}$$

$$\tau_0 = \sup\{\mathcal{I}(\beta) + 1 : \beta < \iota_{\alpha}\}$$

So we have defined $h \upharpoonright \delta_0$, $p \upharpoonright \tau_0$, and $\sup h \upharpoonright \delta_0 = \sup f \upharpoonright \alpha$, $\sup p \upharpoonright \tau_0 = \sup g \upharpoonright \iota_{\alpha}$. For $\nu < \xi$, set:

$$\delta_{\nu} = \sup\{\delta_{0} + \mathcal{I}(\iota_{\alpha} + \eta) + 1 : \eta < \nu\}$$

$$\epsilon_{\nu} = \delta_{0} + \mathcal{I}(\iota_{\alpha} + \nu) = \delta_{\nu} + \mathcal{I}(\iota_{\alpha} + \nu)$$

$$\tau_{\nu} = \sup\{\tau_0 + \mathcal{I}(\iota_{\alpha} + \eta) + 1 : \eta < \nu\}$$

$$\mu_{\nu} = \tau_0 + \mathcal{I}(\iota_{\alpha} + \nu) = \tau_{\nu} + \mathcal{I}(\iota_{\alpha} + \nu)$$

イロト 不得 トイヨト イヨト

Э.

Assume $h \upharpoonright \delta_{\nu}$, $p \upharpoonright \tau_{\nu}$ have been defined and sup $h \upharpoonright \delta_{\nu} = \sup p \upharpoonright \tau_{\nu} = \sup g \upharpoonright (\iota_{\alpha} + \nu)$.

For $\beta < I(\iota_{\alpha} + \nu)$, define:

$$h(\delta_{\nu}+\beta)=p(\tau_{\nu}+\beta)=\mathsf{next}_{C_0}^{\omega\cdot(\beta+1)}(\sup h\restriction \delta_{\nu})$$

イロト イポト イヨト イヨト

This defines
$$h \upharpoonright \epsilon_{\nu}$$
, $p \upharpoonright \mu_{\nu}$, and we then set
 $h(\epsilon_{\nu}) = p(\mu_{\nu}) = g(\iota_{\alpha} + \nu)$.
Let $\delta = \sup\{\epsilon_{\nu} + 1 : \nu < \xi\}$, $\tau = \sup\{\mu_{\nu} + 1 : \nu < \xi\}$.
So, $h \upharpoonright \delta$, $p \upharpoonright \tau$ have been defined and
 $\sup f \upharpoonright \delta = \sup g \upharpoonright \tau = \sup g \upharpoonright (\iota_{\alpha} + \xi)$.

• Note that $\tau \leq \delta \leq \delta_0 + \sup(\mathcal{I} \upharpoonright \alpha) + 1 < \delta_0 + \mathcal{I}(\alpha) = \mathcal{I}(\alpha)$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

Let
$$\ell = \min(\kappa \setminus A) = \iota_{\alpha} + \xi$$
. We could have $g(\ell) > f(\alpha)$ or
 $g(\ell) = f(\alpha)$.
If $g(\ell) > f(\alpha)$, set for $\beta < I(\alpha)$: $h(\delta + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup h \upharpoonright \delta)$
and set $h(I(\alpha)) = f(\alpha)$.
If $g(\ell) = f(\alpha)$ and $\ell = \alpha$, set for $\beta < I(\alpha)$,
 $h(\delta + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup h \upharpoonright \delta)$,
 $p(\tau + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup p \upharpoonright \tau)$,

E 990

イロト イロト イヨト イヨト

If
$$g(\ell) = f(\alpha)$$
 and $\ell < \alpha$, set for $\beta < I(\ell)$,
 $h(\delta + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup h \restriction \delta),$
 $p(\tau + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup p \restriction \tau),$
and for $\beta < I(\alpha)$ set
 $h(\delta + I(\ell) + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup h \restriction I(\ell)),$
as shown.

Set
$$h(I(\alpha)) = f(\alpha)$$
, $p(I(\ell)) = g(\ell) = f(\alpha)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ○♀⊙

Let C_0 be homogeneous for the previous restricted version, and C_1 the closure points of C_0 .

Fix $f, g \in [C_1]^{\kappa}_*$ with $f(\alpha) \leq g(\alpha)$ for all $\alpha < \kappa$.

- We first lower g to get k with f ≤ k ≤ g and such that (k, g) satisfies the assumptions and (f, k) satisfies k(α) is not of the form sup f ↾ β for limit β.
- We then define *h* with *f* ≤ *h* ≤ *k* where (*h*, *k*) and (*f*, *h*) satisfy the assumptions.

Let C_0 be homogeneous for the previous restricted version, and C_1 the closure points of C_0 .

Fix $f, g \in [C_1]^{\kappa}_*$ with $f(\alpha) \leq g(\alpha)$ for all $\alpha < \kappa$.

- We first lower g to get k with f ≤ k ≤ g and such that (k, g) satisfies the assumptions and (f, k) satisfies k(α) is not of the form sup f ↾ β for limit β.
- We then define *h* with *f* ≤ *h* ≤ *k* where (*h*, *k*) and (*f*, *h*) satisfy the assumptions.

Let C_0 be homogeneous for the previous restricted version, and C_1 the closure points of C_0 .

Fix $f, g \in [C_1]^{\kappa}_*$ with $f(\alpha) \leq g(\alpha)$ for all $\alpha < \kappa$.

- We first lower g to get k with f ≤ k ≤ g and such that (k, g) satisfies the assumptions and (f, k) satisfies k(α) is not of the form sup f ↾ β for limit β.
- We then define *h* with *f* ≤ *h* ≤ *k* where (*h*, *k*) and (*f*, *h*) satisfy the assumptions.

Let C_0 be homogeneous for the previous restricted version, and C_1 the closure points of C_0 .

Fix $f, g \in [C_1]^{\kappa}_*$ with $f(\alpha) \leq g(\alpha)$ for all $\alpha < \kappa$.

- We first lower g to get k with f ≤ k ≤ g and such that (k, g) satisfies the assumptions and (f, k) satisfies k(α) is not of the form sup f ↾ β for limit β.
- We then define *h* with *f* ≤ *h* ≤ *k* where (*h*, *k*) and (*f*, *h*) satisfy the assumptions.

Let C_0 be homogeneous for the previous restricted version, and C_1 the closure points of C_0 .

Fix $f, g \in [C_1]^{\kappa}_*$ with $f(\alpha) \leq g(\alpha)$ for all $\alpha < \kappa$.

- We first lower g to get k with f ≤ k ≤ g and such that (k, g) satisfies the assumptions and (f, k) satisfies k(α) is not of the form sup f ↾ β for limit β.
- We then define *h* with *f* ≤ *h* ≤ *k* where (*h*, *k*) and (*f*, *h*) satisfy the assumptions.

Definition of k:

Let (η_{ξ}, v_{ξ}) enumerate the pairs with $g(\eta_{\xi}) = \sup f \upharpoonright v_{\xi}$. If α is not of the form η_{ξ} , let $k(\alpha) = g(\alpha)$.

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

э

We have $\eta_{\xi} \leq \mu_{\xi} < \mu_{\xi} + 1 < \nu_{\xi}$.

Definition of h:

Let (η_{ξ}, v_{ξ}) enumerate the pairs with $f(v_{\xi}) = \sup k \upharpoonright \eta_{\xi}$.

$$\sup f \upharpoonright v_{\xi} \qquad \qquad f(v_{\xi})$$

$$h(\mu_{\xi}) \quad \sup h \upharpoonright \eta_{\xi}$$

 $\sup k \upharpoonright \mu_{\xi} \qquad \qquad k(\mu_{\xi}) \qquad \sup k \upharpoonright \eta_{\xi} \qquad k(\eta_{\xi})$

э

 μ_{ξ} is least so that $k(\mu_{\xi}) > \sup f \upharpoonright v_{\xi}$. $\mu_{\xi} < \eta_{\xi} \le v_{\xi}$.

Suppose $\epsilon < \kappa$, $cof(\epsilon) = \omega$, and $\kappa \to (\kappa)^{\epsilon \cdot \epsilon}$. Then for any $\Phi : [\kappa]^{\epsilon}_* \to On$, there is a c.u.b. $C \subseteq \kappa$ and a $\delta < \epsilon$ such that if $f, g \in [C]^{\epsilon}_*$ with $f \upharpoonright \delta = g \upharpoonright \delta$ and sup(f) = sup(g), then $\Phi(f) = \Phi(g)$.

We have the following application.

Theorem

Suppose $\kappa \to (\kappa)^{<\kappa}$. Then for all $\lambda < \kappa$, there does not exist an injection of $\kappa^{<\kappa}$ into ${}^{\lambda}$ On.

Suppose $\epsilon < \kappa$, $cof(\epsilon) = \omega$, and $\kappa \to (\kappa)^{\epsilon \cdot \epsilon}$. Then for any $\Phi : [\kappa]^{\epsilon}_* \to On$, there is a c.u.b. $C \subseteq \kappa$ and a $\delta < \epsilon$ such that if $f, g \in [C]^{\epsilon}_*$ with $f \upharpoonright \delta = g \upharpoonright \delta$ and sup(f) = sup(g), then $\Phi(f) = \Phi(g)$.

We have the following application.

Theorem

Suppose $\kappa \to (\kappa)^{<\kappa}$. Then for all $\lambda < \kappa$, there does not exist an injection of $\kappa^{<\kappa}$ into $^{\lambda}$ On.

Suppose $\epsilon < \kappa$, $cof(\epsilon) = \omega$, and $\kappa \to (\kappa)^{\epsilon \cdot \epsilon}$. Then for any $\Phi : [\kappa]^{\epsilon}_* \to On$, there is a c.u.b. $C \subseteq \kappa$ and a $\delta < \epsilon$ such that if $f, g \in [C]^{\epsilon}_*$ with $f \upharpoonright \delta = g \upharpoonright \delta$ and sup(f) = sup(g), then $\Phi(f) = \Phi(g)$.

We have the following application.

Theorem

Suppose $\kappa \to (\kappa)^{<\kappa}$. Then for all $\lambda < \kappa$, there does not exist an injection of $\kappa^{<\kappa}$ into ${}^{\lambda}On$.

We prove the application from the theorem.

Proof: Suppose $\Phi: \kappa^{<\kappa} \rightarrow {}^{\lambda}$ On is injective.

For each $\gamma < \lambda$ and ϵ, κ, Φ induces $\Phi_{\gamma}^{\epsilon} : [\kappa]_*^{\epsilon} \to On$ by

 $\Phi^{\epsilon}_{\gamma}(f) = \Phi(f)(\gamma)$

By the Theorem, $\forall \gamma < \lambda \ \forall \epsilon < \kappa \ \exists C \subseteq \kappa \ \exists \delta < \epsilon \ \text{for all } f, g \in [C]^{\epsilon}_{*}$, if $\sup f = \sup g \text{ and } f \upharpoonright \delta = g \upharpoonright \delta$, then $\Phi^{\epsilon}_{\gamma}(f) = \Phi^{\epsilon}_{\gamma}(g)$.

3

Let $\delta_{\gamma}^{\epsilon} < \epsilon$ be the least such δ .

For each $\gamma < \lambda$, let $\delta_{\gamma} < \kappa$ be such that for almost all ϵ of cofinality ω , we have $\delta_{\gamma}^{\epsilon} = \delta_{\gamma}$.

Let
$$\delta^* = \sup_{\gamma < \lambda} \delta_{\gamma} < \kappa$$
.

For each $\gamma < \lambda$, there is an ω -club in κ of ϵ such that $\delta_{\gamma}^{\epsilon} = \delta_{\gamma} < \delta^*$.

By additivity of the club filter, we may fix an $\epsilon^* < \kappa$ so that for all $\gamma < \lambda$, $\delta_{\gamma}^{\epsilon^*} < \delta^*$.

So, for all $\gamma < \lambda$ there is a club $C \subseteq \kappa$ such that for all $f, g \in [C]_*^{\epsilon^*}$ with $\sup f = \sup g$ and $f \upharpoonright \delta^* = g \upharpoonright \delta^*$ we have $\Phi(f)(\gamma) = \Phi(g)(\gamma)$.

We need a variation of the additivity argument.

If we find a c.u.b. $C \subseteq \kappa$ that works for all $\gamma < \lambda$, then we have a contradiction:

Consider $f, g \in [C]^{\epsilon^*}_*$ with sup $f = \sup g, f \upharpoonright \delta^* = g \upharpoonright \delta^*$ and with $f \neq g$.

Additivity argument.

For all
$$\gamma < \lambda$$
, $\forall^* f \in [\kappa]^{\epsilon^*}_*$ if $g \upharpoonright \delta^* = f \upharpoonright \delta^*$, and $g \sqsubseteq f$, then $\Phi(g)(\gamma) = \Phi(g)(\gamma)$.

By the additivity of the function space measure, there is a c.u.b. $C \subseteq \kappa$ such that $\forall \gamma < \lambda \ \forall f \in [C]^{\epsilon^*}_*$ if $g \upharpoonright \delta^* = f \upharpoonright \delta^*$, and $g \sqsubseteq f$, then $\Phi(f)(\gamma) = \Phi(g)(\gamma)$.

This c.u.b. $C \subseteq \kappa$ works. If $f, g \in [C]_*^{\epsilon^*}$, sup $f \upharpoonright \delta^* = \sup g \upharpoonright \delta^*$, and $\sup(f) = \sup(g)$, then there is an $h \in [C]_*^{\epsilon^*}$ with $h \upharpoonright \delta^* = f, g \upharpoonright \delta^*$, and with $f \sqsubseteq h, g \sqsubseteq h$.

イロト 不得 トイヨト イヨト

э