
Introduction to choiceless large cardinals

Gabriel Goldberg

UC Berkeley

2022

Gabriel Goldberg Introduction to choiceless large cardinals



Outline

I Limits of the large cardinal hierarchy in ZFC

I Large cardinals beyond choice

I Structure theory of embeddings from V to V
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Large cardinals

Natural hierarchy of theories extending and strengthening the
standard ZF(C) axioms: large cardinal hypotheses

I Large cardinals provide strong background theories necessary
to analyze set theoretic principles

I Taken as axioms, large cardinals provide a rich and coherent
picture of the universe of sets
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Kunen’s theorem

Taken to its natural extreme, the modern paradigm for formulating
large cardinal hypotheses produces principles that are inconsistent
with the Axiom of Choice

I The consistency of hypotheses at this level cannot be proved
using large cardinal hypotheses compatible with AC

I Taken as axioms, these choiceless large cardinal hypotheses
are starting to provide a rich and coherent picture... of what?
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Elementary embeddings and large cardinals

Theorem (Scott)

A cardinal κ is measurable if and only if one can find an inner
model M ⊆ V and an elementary embedding j : V → M such that
κ is the critical point of j .

I For such a j : V → M, one has Vκ+1 ⊆ M and j � Vκ = id

I κ is 2-strong if one can in addition obtain Vκ+2 ⊆ M
I κ is superstrong if j(Vκ) = Vj(κ)

I In general, one only knows j(Vκ) = Vj(κ) ∩M

I κ is n-fold superstrong if jn(Vκ) = Vjn(κ)

Theorem (Kunen)

There is no nontrivial elementary embedding from V to V .
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Kunen’s bound

Suppose P,Q are transitive and j : P → Q is elementary

I For n < ω, κn(j) = jn(crit(j))

I κω(j) = sup
n<ω

κn(j)

So κ is n-fold superstrong iff there is j : V → M with crit(j) = κ
and Vκn(j) ⊆ M

Axiom I2: κ is ω-fold superstrong if there is a j : V → M with
critical point κ such that Vκω(j) ⊆ M

Theorem (Kunen)

There is no elementary embedding j : V → M such that
Vκω(j)+1 ⊆ M.
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Rank-into-rank embeddings

Another way to climb the large cardinal hierarchy:
embeddings from levels of the cumulative hierarchy to itself

I If j : V → M is elementary with Vλ ⊆ M where λ = κω(j),
j � Vλ is an elementary embedding from Vλ to itself

I Despite Kunen’s bound that Vλ+1 * M, elementary
i : Vλ+1 → Vλ+1 (Axiom I1) are not believed inconsistent
with ZFC

I On the other hand, nontrivial elementary embeddings from
Vλ+2 to itself are inconsistent with ZFC

This has led researchers to focus on the “edge” of inconsistency,
just past Vλ+1.
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The edge of inconsistency

The principle Dn(λ) states that there is a Σn-elementary
embedding from Vλ+1 to Vλ+1 with λ = κω(j).

Theorem (Martin)

D0(λ) < D1(λ) = D2(λ) < D3(λ) = D4(λ) < · · ·

D0(λ) is equivalent to an elementary j : Vλ → Vλ, and D1(λ) is
equivalent to ω-superstrength.
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The edge of inconsistency

Axiom D1
n(λ): Σn-elementary embedding from (Vλ+1,T ) to itself,

where T denotes the satisfaction predicate of Vλ+1.

Axiom D2
n(λ): Σn-elementary embedding from (Vλ+1, S) to itself,

where S denotes the satisfaction predicate of (Vλ+1,T ).

Axiom Dα
n (λ): Σn-elementary embedding from Lα(Vλ+1) to itself.

Woodin’s axiom I0(λ): there is an elementary embedding
j : L(Vλ+1)→ L(Vλ+1) with λ = κω(j).
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L(R) and L(Vλ+1)

Theorem (Solovay)

Under ADL(R), ω1 is measurable in L(R).

Theorem (Woodin)

Under I0(λ), λ+ is measurable in L(Vλ+1).
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L(R) and L(Vλ+1)

Theorem (Davis)

In L(R) under ADL(R), every uncountable subset of R is in
bijection with R.

Theorem (Cramer)

In L(Vλ+1) under I0(λ), every subset of Vλ+1 of cardinality greater
than λ is in bijection with Vλ+1.
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L(R) and L(Vλ+1)

Let ΘL(R) denote the supremum of all ordinals α that are the
surjective image of R in L(R).

Theorem (Moschovakis)

Under ADL(R), ΘL(R) is a strongly inaccessible cardinal in L(R):
i.e., for all η < Θ, every function from P(η) to Θ is bounded.

Let ΘL(Vλ+1) denote the supremum of all ordinals α that are the
surjective image of Vλ+1 in L(Vλ+1).

Theorem (Woodin)

Under I0(λ), ΘL(Vλ+1) is a strongly inaccessible cardinal in L(Vλ+1).
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L(R) and L(Vλ+1)

Theorem (Kunen)

Under ADL(R), in L(R), every ω1-complete filter on an ordinal less
than Θ extends to an ω1-complete ultrafilter.

Theorem (G.)

Under I0(λ), in L(Vλ+1), every λ+-complete filter on an ordinal
less than Θ extends to a λ+-complete ultrafilter.
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Beyond L(Vλ+1)

Theorem (Cramer)

If there is an elementary embedding from L(V#
λ+1) to itself, then

there is an ω-club of γ < λ such that I0(γ) holds.

Analogy between L(R) and L(Vλ+1) extends:

I Determinacy in L(R, Γ) for pointclasses Γ ⊆ P(R)

I Elementary embeddings of L(Vλ+1, Γ) for Γ ⊆ P(Vλ+1)

E.g., Woodin constructed the L(Vλ+1, Γ) analog of the minimum
model of ADR; i.e., L(R, Γ) where Γ ⊆ P(R) is Wadge minimal
such that every game on R in Γ is determined via a Γ-strategy.
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Beyond AC

Choiceless large cardinal hypotheses appear to be stronger than all
of these principles. For example:

Theorem (G.)

ZF + DC + j : Vλ+3 → Vλ+3 proves Con(ZFC + I0).

This is just the base of what seems to be an endless hierarchy

I λ is rank Berkeley if for all α < λ ≤ β, there is an
elementary embedding j : Vβ → Vβ with α < crit(j) < λ

I δ is Berkeley if for all transitive M ⊇ δ, there is an
elementary j : M → M with α < crit(j) < δ

If j : V → V is elementary, κω(j) is rank Berkeley. In ZF alone, a
Berkeley cardinal proves the consistency of ZFC + I0 and probably
of all ZFC large cardinals ever studied (due to Woodin).
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Consistency of choiceless large cardinals

How can one get a handle on the consistency of choiceless large
cardinals?

I If the choiceless hierarchy really outstrips the ZFC large
cardinal hierarchy, the usual methodology is not available

I One can attempt to refute choiceless cardinals in ZF

I Or one can attempt to develop their “structure theory”

Gabriel Goldberg Introduction to choiceless large cardinals



The HOD conjecture

Theorem (Jensen)

Exactly one of the following holds:

I Every uncountable set of ordinals is contained in a
constructible set of the same cardinality.

I Every uncountable cardinal is strongly inaccessible in L.

Theorem (Woodin)

If κ is extendible, exactly one of the following holds:

I Every set of ordinals of size at least κ is contained in an
ordinal definable set of the same cardinality.

I Every regular cardinal above κ is measurable in HOD.

Woodin’s HOD conjecture (assuming large cardinals): there is a
proper class of regular cardinals that are not measurable in HOD.
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Unique embeddings

For P,Q transitive and δ ∈ OrdP , the embeddings j0, j1 : P → Q
are δ-similar if j0(δ) = j1(δ) and sup

α<δ
j0(α) = sup

α<δ
j1(α).

Theorem

If κ is supercompact, then the following are equivalent:

I For all regular δ ≥ κ, for some α > δ, if j0, j1 : Vα → M are
δ-similar elementary embeddings, then j0 � δ = j1 � δ.

I The HOD conjecture is true.

Theorem

If M is an inner model and j0, j1 : V → M are elementary
embeddings, then j0 � Ord = j1 � Ord.
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Schlutzenberg’s theorem

Theorem (Schlutzenberg)

ZFC + I0(λ) is equiconsistent with ZF + DCλ + the existence of
an elementary embedding from Vλ+2 to Vλ+2.

Major open question: What about Vλ+3? Or j : V → V ?

Theorem (Schlutzenberg)

Suppose j : L(Vλ+1)→ L(Vλ+1) is elementary with λ = κω(j). Let
i = j � (Vλ+2)L(Vλ+1) and let M = L(Vλ+1, i). Then

(Vλ+2)M = (Vλ+2)L(Vλ+1)

Therefore in M, i witnesses that there is an elementary embedding
from Vλ+2 to itself.
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Periodicity in the cumulative hierarchy

Suppose λ is a limit ordinal.

I If j : Vλ+1 → Vλ+1 is elementary, j is definable over Vλ+1

from the parameter i = j � Vλ: for any X ∈ Vλ+1,

j(X ) =
⋃
α<λ

i(X ∩ Vα)

I If j : Vλ+2 → Vλ+2, then j is not boldface definable over Vλ+2

I Schlutzenberg asked: for n ≥ 3, must j : Vλ+n → Vλ+n be
undefinable over Vλ+n?

Theorem (G., Schlutzenberg)

Suppose j : Vα → Vα are elementary embeddings. Then j is
definable over Vα if and only if α is an odd ordinal.
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Reflection and collection

A cardinal κ is Σ2-reflecting if Vκ �Σ2 V .

Theorem (Wellordered collection lemma)

Suppose λ is rank Berkeley and κ ≥ λ is a singular Σ2-reflecting
cardinal. If F is a family of nonempty sets with |F| ≤ κ, then
there is a set {ax : x ∈ Vκ} that intersects every set in F .

Note that the Axiom of Choice for families of size λ+ is false if
there is an elementary embedding from Vλ+2 to itself.

Corollary

If λ is rank Berkeley and κ ≥ λ is Σ2-reflecting, either κ or κ+ is
regular.
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Measures on ordinals

Theorem

Suppose λ is rank Berkeley and κ ≥ λ is Σ2-reflecting. Then every
set of κ-complete ultrafilters on ordinals can be wellordered.

This is analogous to the AD theorem that the set of ultrafilters on
ordinals less than θω+2 can be wellordered.

Theorem

Suppose λ is rank Berkeley and κ ≥ λ is Σ2-reflecting. Then every
κ-complete filter on an ordinal extends to a κ-complete ultrafilter.
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Club filters

A filter F is atomic if every F -positive set S has an F -positive
subset T such that F ∪ {T} generates an ultrafilter.

Theorem

If λ is rank Berkeley and κ ≥ λ is Σ2-reflecting, then the club filter
on any regular cardinal above κ is κ-complete and atomic.

The structure of the club filter in this context is very similar to the
expected structure under AD.

Corollary

If λ is rank Berkeley and κ ≥ λ is Σ2-reflecting, either κ or κ+ is
measurable.
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Lindenbaum numbers

If α is an ordinal, then θα denotes the supremum of all ordinals η
that are the surjective image of a set in Vα.

I θω = ω

I θω+1 = ω1

I θω+2 = c+ assuming AC
I More generally, θω+α+1 = (iα)+ assuming AC
I So under AC, θω+α = ℵα for all ordinals α iff GCH holds

I (θω+2)L(R) = ΘL(R)

I If α is a limit ordinal, θα is a strong limit and θα+1 = (θα)+

I Under AD, θω+2 is a strong limit and θω+3 = (θω+2)+
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Periodicity, continued

If α is an ordinal, then θα denotes the supremum of all ordinals η
that are the surjective image of a set in Vα.

Theorem

If λ is rank Berkeley and κ ≥ λ is Σ2-reflecting, then for all even
ordinals ε ≥ κ:

I θε is a strong limit cardinal: if η < θε, then θε is not the
surjective image of P(η).

I θε+1 is not a strong limit cardinal: in fact, θε+1 is the
surjective image of P(θε).

Open question: is θε+1 = (θε)
+?

I One can show |Reg ∩ (θε, θε+1)| < λ
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Plan

I’ll outline a proof of the periodicity theorem for the θα-sequence.
This will require:

I Periodicity for definability of embeddings
I Counting ultrafilters on ordinals

I Wellordered collection lemma
I Hartogs numbers: ℵ(Vε+2) = θε+2

I Analogs of the Moschovakis coding lemma for HODVε+1

I Some choiceless theory of ultrapowers and extenders
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Thanks
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