The negation of the weak Kurepa hypothesis and guessing models

Šárka Stejskalová

Department of Logic, Charles University Department of Mathematics, Bar-Ilan University, Institute of Mathematics, Czech Academy of Sciences

logika.ff.cuni.cz/sarka

July 11, 2022

Definition

- Let $\theta \geq \omega_2$ be a regular cardinal and let $M \prec H(\theta)$ have size ω_1 .
 - **(1)** Given a set $x \in M$, and a subset $d \subseteq x$, we say that
 - **①** *d* is (μ, M) -approximated for $\omega < \mu \le \omega_2$ if, for every *z* ∈ *M* ∩ $\mathscr{P}_{\mu}(M)$, we have *d* ∩ *z* ∈ *M*;
 - 2 d is M-guessed if there is $e \in M$ such that $d \cap M = e \cap M$.
 - 2 *M* is a µ-guessing model for x if every (µ, M)-approximated subset of x is M-guessed.
 - 3 *M* is a μ -guessing model if *M* is μ -guessing for every $x \in M$.

Definition

We denote by $GMP(\mu, \omega_2, H(\theta))$ the assertion that the set

 $\{M \in \mathscr{P}_{\omega_2}(H(\theta)) \mid M \text{ is a } \mu\text{-guessing model}\}$

is stationary in $\mathscr{P}_{\omega_2}(H(\theta))$.

Recall the following definition:

Definition Let κ be a cardinal. We say that a κ -tree T is a κ -Kurepa tree if it has at least κ^+ -many cofinal branches; if we drop the restriction on T being a κ -tree, and require only that T has size and height κ , we obtain a weak Kurepa tree. We say that the Kurepa Hypothesis, KH(κ), holds if there exists a Kurepa tree on κ ; analogously the weak Kurepa Hypothesis, wKH(κ), says that there exists a weak Kurepa tree on κ . Cox and Krueger showed that $GMP(\omega_1, \omega_2, H(\omega_2))$ implies $\neg wKH(\omega_1)$. We show that this is not the case for $GMP(\omega_2, \omega_2, H(\omega_2))$.

Theorem (Lambie-Hanson, S., 2022)

Let κ be a supercompact cardinal. Then there is a generic extension where the following hold:

1)
$$2^{\omega} = \kappa = \omega_2;$$

- 2 there is an ω_1 -Kurepa tree;
- 3 GMP($\omega_2, \omega_2, H(\theta)$) for every $\theta \ge \omega_2$.

GMP and Kurepa trees

- In the proof we use a characterization of GMP formulated in terms of slender lists. Recall that GMP($\omega_2, \omega_2, H(\theta)$) holds for every $\theta \ge \omega_2$ if and only if ISP($\omega_2, \omega_2, \lambda$) holds for every $\lambda \ge \omega_2$.
- Our proof is based on the proof of Cummings who showed that the tree property at ω_2 is consistent with the existence of ω_1 -Kurepa trees.
- The model is obtained by forcing with the product of Mitchell forcing M(ω, κ) up to a supercompact cardinal κ with the forcing for adding an ω₁-Kurepa tree with κ-many cofinal branches K(ω₁, κ): M(ω, κ) × K(ω₁, κ).
- In the proof it is crucial that ω_2 -Knaster forcings cannot add cofinal branches to ω_2 -slender (ω_2, λ)-lists. This cannot be extended to ω_1 -slender (ω_2, λ)-lists, by Cox and Krueger's theorem we mentioned above.

- Viale asked whether it is consistent that there exist μ-guessing models that are not ω₁-guessing for some μ > ω₁.
- A positive answer was given by Hachtman and Sinapova; they proved that if μ is a singular limit of ω -many supercompact cardinals, then for every sufficiently large regular cardinal θ , there are stationarily many μ^+ -guessing models in $\mathscr{P}_{\mu^+}H(\theta)$ that are not δ -guessing for any $\delta \leq \mu$.
- Our theorem provides a different way of showing this, and at a smaller cardinal and from a weaker large cardinal assumption.

Corollary (Lambie-Hanson, S., 2022)

Let κ be a supercompact cardinal. There is a generic extension in which for all regular $\theta \ge \omega_2$, there are stationarily many ω_2 -guessing models $M \in \mathscr{P}_{\omega_2}H(\theta)$ that are not ω_1 -guessing.

Recall the definition of a weak Kurepa tree:

Definition

Let κ be a cardinal. We say that a tree T of size and height κ is a κ -weak Kurepa tree if it has at least κ^+ -many cofinal branches. We say that the weak Kurepa Hypothesis, wKH(κ), holds if there exists a weak Kurepa tree on κ . Some basic properties:

- If CH holds, then $2^{<\omega_1}$ is a weak Kurepa tree.
- Therefore $\neg \mathsf{wKH}(\omega_1)$ implies $2^{\omega} > \omega_1$.
- (Mitchell) In the generic extension by Mitchell forcing up to an inaccessible cardinal ¬wKH(ω₁) holds.
- (Silver) The inaccessible cardinal is necessary. If $\neg wKH(\omega_1)$ holds, then ω_2 is inaccessible in *L*.

Assume that $\neg wKH(\omega_1)$ holds:

- (Baumgartner) If $2^{\omega} = \omega_2$, then $2^{\omega_1} = \omega_2$; in fact, even $\Diamond^+(\omega_2 \cap \operatorname{cof}(\omega_1))$ holds.
- Baumgartner's result can be generalized as follows: if $2^{\omega} < \aleph_{\omega_1}$, then $2^{\omega_1} = 2^{\omega}$.
- This result is sharp, as we showed that if the existence of a supercompact cardinal is consistent, then it is consistent that ¬wKH(ω₁) holds, 2^ω = ℵ_{ω1}, and 2^{ω1} > ℵ_{ω1+1}.

- Recall that a tree T of height ω_1 is *special* if there is a function $f : T \to \omega$ such that, for all $s, t \in T$, if $s <_T t$, then $f(s) \neq f(t)$. It is immediate that a special tree cannot have an uncountable branch.
- Baumgartner introduced a generalization of this notion of specialness that can also be satisfied by trees of height ω_1 that have uncountable branches; this notion was used to prove that PFA implies $\neg wKH(\omega_1)$.

Definition

Suppose that T is a tree of height ω_1 . We say that T is *B*-special if there is a function $f : T \to \omega$ such that, for all $s, t, u \in T$, if f(s) = f(t) = f(u) and $s <_T t, u$, then t and u are $<_T$ -comparable.

• This is indeed a generalization of the notion of specialness, since if T is a tree of height ω_1 with no uncountable branches, then T is special if and only if T is *B*-special.

- (Baumgartner) If T is a tree of size and height ω₁ which is B-special then T has at most ω₁ many cofinal branches. Therefore if all trees of size and height ω₁ are B-special, then ¬wKH(ω₁) holds.
- (Baumgartner) If T is tree of size and height ω_1 with at most ω_1 many cofinal branches, then there is a ccc forcing which forces that T is *B*-special.

- (Baumgarter) MA_{ω1} + ¬wKH(ω1) implies that every tree T of size and height ω1 without cofinal branches is B-special.
- ¬wKH(ω₁)+ all trees of size and height ω₁ without cofinal branches are special ⇔ all trees of size and height ω₁ are B-special.
- Baumgartner and Todorcevic independently proved that MA_{ω1} + ¬wKH(ω1) is consistent relative to the existence of an inaccessible cardinal.

- Note that ¬wKH(ω₁) is consistent with an arbitrary value of 2^ω = μ. Consider the product of Mitchell forcing up to an inaccessible cardinal with Cohen forcing at ω of length μ.
- It is not obvious how to get all trees *B*-special on ω_1 with $2^{\omega} > \omega_2$. We cannot just use Cohen forcing over Todorcevic's or Baumgartner's model because Cohen forcing adds an ω_1 -Suslin tree.

 \neg wKH(ω_1) and 2^{ω}

- One could try Todorcevic's approach. He first forces with Mitchell forcing up to an inaccessible cardinal κ and then over the Mitchell model forces with the iteration (finite support) of length κ of small ccc forcings which do not add cofinal branches to trees of height and size ω₁, which ensures MA_{ω1}.
- We do not know how to generalize this approach for finite support iterations of length μ > ω₂ = κ for an arbitrary μ.
 - It works if the cofinality of μ is at least ω₂: then it is possible to specialize all trees without cofinal branches of height and size ω₁.
 - However, this does not solve the problem for 2^ω = μ, where cf(μ) = ω₁, because a tree may appear at the end of the iteration, without being added at some intermediate stage.

- Laver found a way around this problem: he showed that if one forces with a measure algebra \mathbb{B} over any model of MA_{ω_1} , then in the resulting forcing extension, it remains true that every tree of height and size ω_1 with no uncountable branches is special.
- We modified Laver's argument to prove an analogous result and showed that if one forces with a measure algebra over any model of PFA, then in the resulting forcing extension every tree of height and size ω₁ is *B*-special.

Theorem (Lambie-Hanson, S., 2022)

Suppose that PFA holds, κ is an infinite cardinal, and \mathbb{B} is the measure algebra on 2^{κ} , with associated measure μ . Then, in $V^{\mathbb{B}}$, every tree of height and size ω_1 is *B*-special.

- Recall the proof that PFA implies $\neg wKH(\omega_1)$.
- Let T be a tree of size and height ω_1 with ω_2 -many cofinal branches.
- Consider the forcing $Coll(\omega_1, \omega_2) * Spec(T)$.
- Our proof uses this approach except we specialize not a tree, but a \mathbb{B} -name for a tree using Laver's method.

As a corollary, we can show that an "indestructible" version of the negation of the weak Kurepa Hypothesis is compatible with any possible value of the continuum except ω_1 . More precisely:

Corollary (Lambie-Hanson, S., 2022)

Suppose that PFA holds, $\kappa \geq \omega_2$ is a cardinal of uncountable cofinality, and \mathbb{B} is the measure algebra on 2^{κ} . Then, in $V^{\mathbb{B}}$, $2^{\omega} = \kappa$ and, for every tree T of size and height ω_1 and every outer model W of $V^{\mathbb{B}}$ such that $(\omega_1)^W = (\omega_1)^{V^{\mathbb{B}}}$, T has at most ω_1 -many uncountable branches in W.

Cox and Krueger introduce the *indestructible guessing model property*.

Definition

Let $\theta \geq \omega_2$ be a cardinal. Then IGMP (θ) is the assertion that there are stationarily many $M \in \mathscr{P}_{\omega_2}(H(\theta))$ such that M is an ω_1 -guessing model and remains an ω_1 -guessing model in any forcing extension that preserves ω_1 . IGMP is the statement that IGMP (θ) holds for all $\theta \geq \omega_2$.

- By an argument of Cox and Krueger, who showed that IGMP implies that no tree of size and height ω₁ gets a new cofinal branch in any ω₁-preserving forcing extension, it is clear that IGMP(ω₂) implies the indestructible version of ¬wKH(ω₁) in the case in which W is a forcing extension of V.
- We saw that this indestructible version of ¬wKH(ω₁) is compatible with any possible value of the continuum, including values of cofinality ω₁.
- Cox and Krueger showed that IGMP is compatible with any possible value of the continuum with cofinality at least ω₂. The combination of these two results naturally raises question (1):

Some open questions:

- Is IGMP compatible with cf(2^ω) = ω₁? What about just IGMP(ω₂)?
- ② Does IGMP imply that all trees of size and height ω₁ are B-special? Or even, does the "indestructible" version of ¬wKH(ω₁) imply that all trees of size and height ω₁ are B-special?