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An intersection model

Let x ∈ Rω be Cohen generic. Define the tail intersection model

M =
⋂
n<ω

V [〈xn, xn+1, ...〉].

This model was considered by Kanovei-Sabok-Zapletal (2013) and
Larson-Zapletal (2020), while studying E1.
E1 is the equivalence relation on Rω:
x E1 y ⇐⇒ (∃n)(∀m > n)x(m) = y(m).
What this model looks like was left open. In particular: does it
satisfy choice?

We will see some structural results about this model.
The main topic of this talk is: what do the properties of this model
tell us about E1?
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Complete classifications

EA

B
C

Let E be an equivalence relation on X .
A complete classification of E is a map c : X → I

x E y ⇐⇒ c(x) = c(y).

Some “bad” examples:
- c : X/E → X choice function c([x ]E ) ∈ [x ]E . (Not definable)
- x 7→ [x ]E . (Hard to describe c(x) from x)

Say that c is absolute if:
• c is definable (set theoretically).
• c remains a complete classification in generic extensions.
• c(x)W = c(x)W [G ] for x ∈W . (“local computation”)

E ,F E.R.s on Polish spaces X ,Y . f : X → Y is a reduction if
x E y ⇐⇒ f (x) F f (y).

E is Borel reducible to F , E ≤B F , if there is a Borel reduction.
=⇒ Classifying invariants for F can be used to classify E .
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An extremely partial picture of Borel equivalence relations
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Generically absolute classifications

Definition: c : X → I a definable complete classification of E .
Say that c is generically absolute if

I it remains a complete classification in a Cohen-real extension.

I c(x)W = c(x)W [G ] for x ∈W .

Main point: allow some non-orbit relations to “be classifiable” too, while

preserving the intuitions about classifications by countable structures.

Theorem
1. E1 is generically classifiable. (Using b many of E0-classes.)

A. Choice fails in M. (for b-sequences of E0-classes)

2. E1 does not admit an absolute classification.

B. M = V (A) for a set (of reals) A.

3. E1 is not gen. class. using < add(B) many E0-classes.

C. An analysis of reals in M. (Question: Does M |= DC<add(B)?)

Question: is (1) optimal? Cichon-Pawlikowsky: bV [x] = add(B)V
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Classifying invariants for E1

- E1 on (2ω)ω, x E1 y ⇐⇒ (∃n)(∀m > n)x(m) = y(m).
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- Fix x ∈ (2ω)ω. Given f ∈ ωω, Let [x � f ]
be the set of all finite changes of x � f .
This is E1-invariant. ([x � f ] is an E0-class.)
Fix 〈fα | α < b〉, <∗-unbdd, fα increasing.

Claim
x 7→ 〈[x � fα] | α < b〉 is a complete
classification of E1.
Moreover, this is true in any
model in which 〈fα | α < b〉 is unbounded.
(In particular, in a Cohen-real extension.)

Note: Given Cohen-generic x , 〈[x � fα] | α < b〉 ∈ M.

Claim
〈[x � fα] | α < b〉 has no choice function in M.

Thanks for listening!
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