A tail of a generic real Classifying invariants for E_{1}

Assaf Shani

Harvard University

Advances in Set Theory HUJI, July 2022

An intersection model

Let $x \in \mathbb{R}^{\omega}$ be Cohen generic. Define the tail intersection model

$$
M=\bigcap_{n<\omega} V\left[\left\langle x_{n}, x_{n+1}, \ldots\right\rangle\right] .
$$

An intersection model

Let $x \in \mathbb{R}^{\omega}$ be Cohen generic. Define the tail intersection model

$$
M=\bigcap_{n<\omega} V\left[\left\langle x_{n}, x_{n+1}, \ldots\right\rangle\right] .
$$

This model was considered by Kanovei-Sabok-Zapletal (2013) and Larson-Zapletal (2020), while studying E_{1}.

An intersection model

Let $x \in \mathbb{R}^{\omega}$ be Cohen generic. Define the tail intersection model

$$
M=\bigcap_{n<\omega} V\left[\left\langle x_{n}, x_{n+1}, \ldots\right\rangle\right] .
$$

This model was considered by Kanovei-Sabok-Zapletal (2013) and Larson-Zapletal (2020), while studying E_{1}.
E_{1} is the equivalence relation on \mathbb{R}^{ω} :
$x E_{1} y \Longleftrightarrow(\exists n)(\forall m>n) x(m)=y(m)$.

An intersection model

Let $x \in \mathbb{R}^{\omega}$ be Cohen generic. Define the tail intersection model

$$
M=\bigcap_{n<\omega} V\left[\left\langle x_{n}, x_{n+1}, \ldots\right\rangle\right] .
$$

This model was considered by Kanovei-Sabok-Zapletal (2013) and Larson-Zapletal (2020), while studying E_{1}.
E_{1} is the equivalence relation on \mathbb{R}^{ω} :
$x E_{1} y \Longleftrightarrow(\exists n)(\forall m>n) x(m)=y(m)$.
What this model looks like was left open. In particular: does it satisfy choice?

An intersection model

Let $x \in \mathbb{R}^{\omega}$ be Cohen generic. Define the tail intersection model

$$
M=\bigcap_{n<\omega} V\left[\left\langle x_{n}, x_{n+1}, \ldots\right\rangle\right] .
$$

This model was considered by Kanovei-Sabok-Zapletal (2013) and Larson-Zapletal (2020), while studying E_{1}.
E_{1} is the equivalence relation on \mathbb{R}^{ω} :
$x E_{1} y \Longleftrightarrow(\exists n)(\forall m>n) x(m)=y(m)$.
What this model looks like was left open. In particular: does it satisfy choice?

We will see some structural results about this model.
The main topic of this talk is: what do the properties of this model tell us about E_{1} ?

Complete classifications

Let E be an equivalence relation on X.
A complete classification of E is a map $c: X \rightarrow I$

$$
x E y \Longleftrightarrow c(x)=c(y)
$$

Complete classifications

Let E be an equivalence relation on X.
A complete classification of E is a map $c: X \rightarrow I$

$$
x E y \Longleftrightarrow c(x)=c(y)
$$

Some "bad" examples:

- $c: X / E \rightarrow X$ choice function $c\left([x]_{E}\right) \in[x]_{E}$. (Not definable)

Complete classifications

Let E be an equivalence relation on X.
A complete classification of E is a map $c: X \rightarrow I$

$$
x E y \Longleftrightarrow c(x)=c(y)
$$

Some "bad" examples:

- $c: X / E \rightarrow X$ choice function $c\left([x]_{E}\right) \in[x]_{E}$. (Not definable)
$-x \mapsto[x]_{E}$. (Hard to describe $c(x)$ from x)

Complete classifications

Let E be an equivalence relation on X.
A complete classification of E is a map $c: X \rightarrow I$

$$
x E y \Longleftrightarrow c(x)=c(y)
$$

Some "bad" examples:

- $c: X / E \rightarrow X$ choice function $c\left([x]_{E}\right) \in[x]_{E}$. (Not definable)
- $x \mapsto[x]_{E}$. (Hard to describe $c(x)$ from x)

Say that c is absolute if:

- c is definable (set theoretically).
- c remains a complete classification in generic extensions.

Complete classifications

Let E be an equivalence relation on X.
A complete classification of E is a map $c: X \rightarrow I$

$$
x E y \Longleftrightarrow c(x)=c(y)
$$

Some "bad" examples:

- $c: X / E \rightarrow X$ choice function $c\left([x]_{E}\right) \in[x]_{E}$. (Not definable)
- $x \mapsto[x]_{E}$. (Hard to describe $c(x)$ from x)

Say that c is absolute if:

- c is definable (set theoretically).
- c remains a complete classification in generic extensions.
- $c(x)^{W}=c(x)^{W[G]}$ for $x \in W$. ("local computation")

Complete classifications

Let E be an equivalence relation on X.
A complete classification of E is a map $c: X \rightarrow I$

$$
x E y \Longleftrightarrow c(x)=c(y)
$$

Some "bad" examples:

- $c: X / E \rightarrow X$ choice function $c\left([x]_{E}\right) \in[x]_{E}$. (Not definable)
- $x \mapsto[x]_{E}$. (Hard to describe $c(x)$ from x)

Say that c is absolute if:

- c is definable (set theoretically).
- c remains a complete classification in generic extensions.
- $c(x)^{W}=c(x)^{W[G]}$ for $x \in W$. ("local computation")
E, F E.R.s on Polish spaces $X, Y . f: X \rightarrow Y$ is a reduction if

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

E is Borel reducible to $F, E \leq_{B} F$, if there is a Borel reduction.

Complete classifications

Let E be an equivalence relation on X.
A complete classification of E is a map $c: X \rightarrow I$

$$
x E y \Longleftrightarrow c(x)=c(y)
$$

Some "bad" examples:

- $c: X / E \rightarrow X$ choice function $c\left([x]_{E}\right) \in[x]_{E}$. (Not definable)
- $x \mapsto[x]_{E}$. (Hard to describe $c(x)$ from x)

Say that c is absolute if:

- c is definable (set theoretically).
- c remains a complete classification in generic extensions.
- $c(x)^{W}=c(x)^{W[G]}$ for $x \in W$. ("local computation")
E, F E.R.s on Polish spaces $X, Y . f: X \rightarrow Y$ is a reduction if

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

E is Borel reducible to $F, E \leq_{B} F$, if there is a Borel reduction.
\Longrightarrow Classifying invariants for F can be used to classify E.

An extremely partial picture of Borel equivalence relations

An extremely partial picture of Borel equivalence relations

Generically absolute classifications

Definition: $c: X \rightarrow I$ a definable complete classification of E. Say that c is generically absolute if

- it remains a complete classification in a Cohen-real extension.
- $c(x)^{W}=c(x)^{W[G]}$ for $x \in W$.

Generically absolute classifications

Definition: $c: X \rightarrow I$ a definable complete classification of E. Say that c is generically absolute if

- it remains a complete classification in a Cohen-real extension.
- $c(x)^{W}=c(x)^{W[G]}$ for $x \in W$.

Main point: allow some non-orbit relations to "be classifiable" too, while preserving the intuitions about classifications by countable structures.

Generically absolute classifications

Definition: $c: X \rightarrow I$ a definable complete classification of E. Say that c is generically absolute if

- it remains a complete classification in a Cohen-real extension.
- $c(x)^{W}=c(x)^{W[G]}$ for $x \in W$.

Main point: allow some non-orbit relations to "be classifiable" too, while preserving the intuitions about classifications by countable structures.
Theorem

1. E_{1} is generically classifiable. (Using \mathfrak{b} many of E_{0}-classes.)
A. Choice fails in M. (for \mathfrak{b}-sequences of E_{0}-classes)

Generically absolute classifications

Definition: $c: X \rightarrow I$ a definable complete classification of E. Say that c is generically absolute if

- it remains a complete classification in a Cohen-real extension.
- $c(x)^{W}=c(x)^{W[G]}$ for $x \in W$.

Main point: allow some non-orbit relations to "be classifiable" too, while preserving the intuitions about classifications by countable structures.
Theorem

1. E_{1} is generically classifiable. (Using \mathfrak{b} many of E_{0}-classes.)
A. Choice fails in M. (for \mathfrak{b}-sequences of E_{0}-classes)
2. E_{1} does not admit an absolute classification.
B. $M=V(A)$ for a set (of reals) A.

Generically absolute classifications

Definition: $c: X \rightarrow I$ a definable complete classification of E. Say that c is generically absolute if

- it remains a complete classification in a Cohen-real extension.
- $c(x)^{W}=c(x)^{W[G]}$ for $x \in W$.

Main point: allow some non-orbit relations to "be classifiable" too, while preserving the intuitions about classifications by countable structures.
Theorem

1. E_{1} is generically classifiable. (Using \mathfrak{b} many of E_{0}-classes.)
A. Choice fails in M. (for \mathfrak{b}-sequences of E_{0}-classes)
2. E_{1} does not admit an absolute classification.
B. $M=V(A)$ for a set (of reals) A.
3. E_{1} is not gen. class. using $<\boldsymbol{\operatorname { a d d }}(\mathcal{B})$ many E_{0}-classes.
C. An analysis of reals in M. (Question: Does $M \models \mathrm{DC}_{<\operatorname{add}(\mathcal{B})}$?)

Generically absolute classifications

Definition: $c: X \rightarrow I$ a definable complete classification of E. Say that c is generically absolute if

- it remains a complete classification in a Cohen-real extension.
- $c(x)^{W}=c(x)^{W[G]}$ for $x \in W$.

Main point: allow some non-orbit relations to "be classifiable" too, while preserving the intuitions about classifications by countable structures.
Theorem

1. E_{1} is generically classifiable. (Using \mathfrak{b} many of E_{0}-classes.)
A. Choice fails in M. (for \mathfrak{b}-sequences of E_{0}-classes)
2. E_{1} does not admit an absolute classification.
B. $M=V(A)$ for a set (of reals) A.
3. E_{1} is not gen. class. using $<\boldsymbol{\operatorname { a d d }}(\mathcal{B})$ many E_{0}-classes.
C. An analysis of reals in M. (Question: Does $M \models \mathrm{DC}_{<\operatorname{add}(\mathcal{B})}$?)

Question: is (1) optimal? Cichon-Pawlikowsky: $\mathfrak{b}^{V[x]}=\boldsymbol{\operatorname { a d d }}(\mathcal{B})^{V}$

Classifying invariants for E_{1}

$-E_{1}$ on $\left(2^{\omega}\right)^{\omega}, x E_{1} y \Longleftrightarrow(\exists n)(\forall m>n) \times(m)=y(m)$.

Classifying invariants for E_{1}

- E_{1} on $\left(2^{\omega}\right)^{\omega}, x E_{1} y \Longleftrightarrow(\exists n)(\forall m>n) x(m)=y(m)$.
- Fix $x \in\left(2^{\omega}\right)^{\omega}$. Given $f \in \omega^{\omega}$, Let $[x \upharpoonright f]$
be the set of all finite changes of $x \mid f$. $\quad x$
This is E_{1}-invariant. ($[x \upharpoonright f]$ is an E_{0}-class.)

$$
\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0_{f} & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
\hline 0 & 1 & 1 & 1 & 0
\end{array}
$$

Classifying invariants for E_{1}

- E_{1} on $\left(2^{\omega}\right)^{\omega}, x E_{1} y \Longleftrightarrow(\exists n)(\forall m>n) x(m)=y(m)$.
- Fix $x \in\left(2^{\omega}\right)^{\omega}$. Given $f \in \omega^{\omega}$, Let $[x \upharpoonright f]$
be the set of all finite changes of $x \upharpoonright f$. $\quad x$
This is E_{1}-invariant. ($[x \upharpoonright f]$ is an E_{0}-class.)

$$
\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0_{f} & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
\hline 0 & 1 & 1 & 1 & 0
\end{array}
$$

Classifying invariants for E_{1}

- E_{1} on $\left(2^{\omega}\right)^{\omega}, x E_{1} y \Longleftrightarrow(\exists n)(\forall m>n) x(m)=y(m)$.
- Fix $x \in\left(2^{\omega}\right)^{\omega}$. Given $f \in \omega^{\omega}$, Let $[x \upharpoonright f]$
be the set of all finite changes of $x \upharpoonright f$. x
This is E_{1}-invariant. ($[x \upharpoonright f]$ is an E_{0}-class.)

1	0	1	1	0
0	1	1	1	1
1	1	0	0	1
1	0	0_{f}	0	0
1	1	0	0	1
0	1	1	1	0

(In particular, in a Cohen-real extension.)

Classifying invariants for E_{1}

- E_{1} on $\left(2^{\omega}\right)^{\omega}, x E_{1} y \Longleftrightarrow(\exists n)(\forall m>n) x(m)=y(m)$.
- Fix $x \in\left(2^{\omega}\right)^{\omega}$. Given $f \in \omega^{\omega}$, Let $[x \upharpoonright f]$
be the set of all finite changes of $x \mid f$. $\quad x$
This is E_{1}-invariant. ($[x \upharpoonright f]$ is an E_{0}-class.)

Fix $\left\langle f_{\alpha} \mid \alpha<\mathfrak{b}\right\rangle,<^{*}$-unbdd, f_{α} increasing.
Claim
$x \mapsto\left\langle\left[x \mid f_{\alpha}\right] \mid \alpha<\mathfrak{b}\right\rangle$ is a complete
classification of E_{1}.
Moreover, this is true in any model in which $\left\langle f_{\alpha} \mid \alpha<\mathfrak{b}\right\rangle$ is unbounded.
(In particular, in a Cohen-real extension.)
Note: Given Cohen-generic $x,\left\langle\left[x \upharpoonright f_{\alpha}\right] \mid \alpha<\mathfrak{b}\right\rangle \in M$.
Claim
$\left\langle\left[x \mid f_{\alpha}\right] \mid \alpha<\mathfrak{b}\right\rangle$ has no choice function in M.

Classifying invariants for E_{1}

- E_{1} on $\left(2^{\omega}\right)^{\omega}, x E_{1} y \Longleftrightarrow(\exists n)(\forall m>n) x(m)=y(m)$.
- Fix $x \in\left(2^{\omega}\right)^{\omega}$. Given $f \in \omega^{\omega}$, Let $[x \upharpoonright f]$
be the set of all finite changes of $x \mid f$. $\quad x$
This is E_{1}-invariant. ($[x \upharpoonright f]$ is an E_{0}-class.)

Fix $\left\langle f_{\alpha} \mid \alpha<\mathfrak{b}\right\rangle,<^{*}$-unbdd, f_{α} increasing.
Claim
$x \mapsto\left\langle\left[x \mid f_{\alpha}\right] \mid \alpha<\mathfrak{b}\right\rangle$ is a complete
classification of E_{1}.
Moreover, this is true in any model in which $\left\langle f_{\alpha} \mid \alpha<\mathfrak{b}\right\rangle$ is unbounded.
(In particular, in a Cohen-real extension.)
Note: Given Cohen-generic $x,\left\langle\left[x \upharpoonright f_{\alpha}\right] \mid \alpha<\mathfrak{b}\right\rangle \in M$.
Claim
$\left\langle\left[x \mid f_{\alpha}\right] \mid \alpha<\mathfrak{b}\right\rangle$ has no choice function in M.

