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This model was considered by Kanovei-Sabok-Zapletal (2013) and
Larson-Zapletal (2020), while studying Ej.

E; is the equivalence relation on RY:

x By y < (3n)(Vm > n)x(m) = y(m).

What this model looks like was left open. In particular: does it
satisfy choice?

We will see some structural results about this model.
The main topic of this talk is: what do the properties of this model
tell us about E17?
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Let E be an equivalence relation on X.
A complete classification of E isa map c: X — | % E

xEy < c(x)=c(y). @

Some “bad” examples:

- ¢: X/E — X choice function c([x]g) € [x]e. (Not definable)
- x = [x]g. (Hard to describe c(x) from x)

Say that c is absolute if:

e c is definable (set theoretically).

e C remains a complete classification in generic extensions.

o c(x)W = c(x)"I€] for x € W. (“local computation”)

E.F E.R.s on Polish spaces X, Y. f: X — Y is a reduction if
xEy < f(x)F f(y).

E is Borel reducible to F, E <g F, if there is a Borel reduction.

= Classifying invariants for F can be used to classify E.
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Main point: allow some non-orbit relations to “be classifiable” too, while
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Theorem

1. Ej is generically classifiable. (Using b many of Ep-classes.)
Choice fails in M. (for b-sequences of Eg-classes)

E; does not admit an absolute classification.

M = V/(A) for a set (of reals) A.

E; is not gen. class. using < add(B) many Ep-classes.

C. An analysis of reals in M. (Question: Does M |= DC_aq4(5)?)

w o~

Question: is (1) optimal? Cichon-Pawlikowsky: bY = add(B)Y
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Thanks for listening!



