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I. Introduction



Two-cardinal lists

Definition

Let κ ≤ λ be uncountable cardinals.

A Pκλ-list is a sequence
D = ⟨dx | x ∈ Pκλ⟩ such that dx ⊆ x for all x ∈ Pκλ.

A cofinal branch through D is a set b ⊆ λ such that, for all
x ∈ Pκλ, there is a y ∈ Pκλ such that y ⊇ x and b∩ x = dy ∩ x .

An ineffable branch through D is a set b ⊆ λ such that the set
{x ∈ Pκλ | b ∩ x = dx} is stationary in Pκλ.

Theorem

Suppose that κ is an uncountable cardinal.

• (Jech, 1973) κ is strongly compact if and only if, for all
λ ≥ κ, every (κ, λ)-list has a cofinal branch.

• (Magidor, 1974) κ is supercompact if and only if, for all
λ ≥ κ, every (κ, λ)-list has an ineffable branch.



Two-cardinal lists

Definition

Let κ ≤ λ be uncountable cardinals. A Pκλ-list is a sequence
D = ⟨dx | x ∈ Pκλ⟩ such that dx ⊆ x for all x ∈ Pκλ.

A cofinal branch through D is a set b ⊆ λ such that, for all
x ∈ Pκλ, there is a y ∈ Pκλ such that y ⊇ x and b∩ x = dy ∩ x .

An ineffable branch through D is a set b ⊆ λ such that the set
{x ∈ Pκλ | b ∩ x = dx} is stationary in Pκλ.

Theorem

Suppose that κ is an uncountable cardinal.

• (Jech, 1973) κ is strongly compact if and only if, for all
λ ≥ κ, every (κ, λ)-list has a cofinal branch.

• (Magidor, 1974) κ is supercompact if and only if, for all
λ ≥ κ, every (κ, λ)-list has an ineffable branch.



Two-cardinal lists

Definition

Let κ ≤ λ be uncountable cardinals. A Pκλ-list is a sequence
D = ⟨dx | x ∈ Pκλ⟩ such that dx ⊆ x for all x ∈ Pκλ.

A cofinal branch through D is a set b ⊆ λ such that, for all
x ∈ Pκλ, there is a y ∈ Pκλ such that y ⊇ x and b∩ x = dy ∩ x .

An ineffable branch through D is a set b ⊆ λ such that the set
{x ∈ Pκλ | b ∩ x = dx} is stationary in Pκλ.

Theorem

Suppose that κ is an uncountable cardinal.

• (Jech, 1973) κ is strongly compact if and only if, for all
λ ≥ κ, every (κ, λ)-list has a cofinal branch.

• (Magidor, 1974) κ is supercompact if and only if, for all
λ ≥ κ, every (κ, λ)-list has an ineffable branch.



Two-cardinal lists

Definition

Let κ ≤ λ be uncountable cardinals. A Pκλ-list is a sequence
D = ⟨dx | x ∈ Pκλ⟩ such that dx ⊆ x for all x ∈ Pκλ.

A cofinal branch through D is a set b ⊆ λ such that, for all
x ∈ Pκλ, there is a y ∈ Pκλ such that y ⊇ x and b∩ x = dy ∩ x .

An ineffable branch through D is a set b ⊆ λ such that the set
{x ∈ Pκλ | b ∩ x = dx} is stationary in Pκλ.

Theorem

Suppose that κ is an uncountable cardinal.

• (Jech, 1973) κ is strongly compact if and only if, for all
λ ≥ κ, every (κ, λ)-list has a cofinal branch.

• (Magidor, 1974) κ is supercompact if and only if, for all
λ ≥ κ, every (κ, λ)-list has an ineffable branch.



Two-cardinal lists

Definition

Let κ ≤ λ be uncountable cardinals. A Pκλ-list is a sequence
D = ⟨dx | x ∈ Pκλ⟩ such that dx ⊆ x for all x ∈ Pκλ.

A cofinal branch through D is a set b ⊆ λ such that, for all
x ∈ Pκλ, there is a y ∈ Pκλ such that y ⊇ x and b∩ x = dy ∩ x .

An ineffable branch through D is a set b ⊆ λ such that the set
{x ∈ Pκλ | b ∩ x = dx} is stationary in Pκλ.

Theorem

Suppose that κ is an uncountable cardinal.

• (Jech, 1973) κ is strongly compact if and only if, for all
λ ≥ κ, every (κ, λ)-list has a cofinal branch.

• (Magidor, 1974) κ is supercompact if and only if, for all
λ ≥ κ, every (κ, λ)-list has an ineffable branch.



Two-cardinal lists

Definition

Let κ ≤ λ be uncountable cardinals. A Pκλ-list is a sequence
D = ⟨dx | x ∈ Pκλ⟩ such that dx ⊆ x for all x ∈ Pκλ.

A cofinal branch through D is a set b ⊆ λ such that, for all
x ∈ Pκλ, there is a y ∈ Pκλ such that y ⊇ x and b∩ x = dy ∩ x .

An ineffable branch through D is a set b ⊆ λ such that the set
{x ∈ Pκλ | b ∩ x = dx} is stationary in Pκλ.

Theorem

Suppose that κ is an uncountable cardinal.

• (Jech, 1973) κ is strongly compact if and only if, for all
λ ≥ κ, every (κ, λ)-list has a cofinal branch.

• (Magidor, 1974) κ is supercompact if and only if, for all
λ ≥ κ, every (κ, λ)-list has an ineffable branch.



Two-cardinal lists

Definition

Let κ ≤ λ be uncountable cardinals. A Pκλ-list is a sequence
D = ⟨dx | x ∈ Pκλ⟩ such that dx ⊆ x for all x ∈ Pκλ.

A cofinal branch through D is a set b ⊆ λ such that, for all
x ∈ Pκλ, there is a y ∈ Pκλ such that y ⊇ x and b∩ x = dy ∩ x .

An ineffable branch through D is a set b ⊆ λ such that the set
{x ∈ Pκλ | b ∩ x = dx} is stationary in Pκλ.

Theorem

Suppose that κ is an uncountable cardinal.

• (Jech, 1973) κ is strongly compact if and only if, for all
λ ≥ κ, every (κ, λ)-list has a cofinal branch.

• (Magidor, 1974) κ is supercompact if and only if, for all
λ ≥ κ, every (κ, λ)-list has an ineffable branch.



Thin and slender lists

Definition (Weiß)

Let µ ≤ κ ≤ λ be uncountable cardinals. A (κ, λ)-list D is

• thin if, for all x ∈ Pκλ, we have

|{dy ∩ x | y ∈ Pκλ, y ⊇ x}| < κ;

• µ-slender if for all sufficiently large θ, there is a club
C ⊆ PκH(θ) such that, for all M ∈ C and all y ∈ M ∩ Pµλ,
we have dM∩λ ∩ y ∈ M.

Definition (Weiß)

(I)TP(κ, λ) ≡ every thin (κ, λ)-list has a cofinal (ineffable) branch

(I)SP(µ, κ, λ) ≡ every µ-slender (κ, λ)-list has a cofinal (ineffable)
branch.
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Initial observations
Suppose that µ ≤ µ′ ≤ κ ≤ λ and D is a (κ, λ)-list. Then

D is thin ⇒ D is µ′-slender ⇒ D is µ-slender.

As a result,

(I)SP(µ, κ, λ) ⇒ (I)SP(µ′, κ, λ) ⇒ (I)TP(κ, λ).

If κ ≤ λ ≤ λ′, then

(I)SP(µ, κ, λ′) ⇒ (I)SP(µ, κ, λ) and (I)TP(κ, λ′) ⇒ (I)TP(κ, λ).

If κ is inaccessible, then every (κ, λ)-list is thin.

Theorem (Weiß, 2012)

If κ is supercompact, then, in the extension by the Mitchell forcing
M(ω, κ), ISP(ω1, ω2,≥ω2) holds.
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Guessing models

Definition (Viale–Weiß)

Let µ be an uncountable cardinal and M be a set.

Given a set
x ∈ M and a subset d ⊆ x , we say that

• d is (µ,M)-approximated if, for every z ∈ M ∩ Pµ(x), we
have d ∩ z ∈ M.
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• d is M-guessed if there is e ∈ M such that d ∩M = e ∩M.

M is a µ-guessing model if, for all x ∈ M and all d ⊆ x , if d is
(µ,M)-approximated, then d is M-guessed. For regular
uncountable µ ≤ κ ≤ θ, GMP(µ, κ,H(θ)) ≡ the set of µ-guessing
models is stationary in PκH(θ)

Theorem (Viale–Weiß, 2011)

Suppose that µ ≤ κ are regular uncountable cardinals. TFAE:

1 ISP(µ, κ,≥κ);

2 GMP(µ, κ,H(θ)) for all regular θ ≥ κ.
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Other background results

• (Viale–Weiß, 2011) PFA ⇒ ISP(ω1, ω2,≥ω2).

• (Weiß, 2012) ITP(κ, λ) ⇒ ¬□(λ) (even ¬□(λ,<κ)).

• (Viale, 2012; Krueger, 2019; Hachtman, 2019)
ISP(ω1, ω2,≥ω2) ⇒ SCH.

• (Cox–Krueger, 2017) ISP(ω1, ω2, ω2) ⇒ ¬wKH.
• (Cox–Krueger, 2016) ISP(ω1, ω2,≥ω2) is compatible with any
possible value of the continuum ≥ω2.

Much of our work arose from questions about the optimality of
these results and the extent to which consequences of various
instances of ISP or ITP can be obtained from weaker principles.

We are especially interested in removing the requirement of
ineffability from the hypotheses.
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II. Slender lists and
almost guessing



Almost guessing
Definition

Suppose that µ ≤ κ ≤ θ are regular uncountable cardinals,
x ∈ M ⊆ H(θ), and S ⊆ PκH(θ) is ⊆-cofinal.

We say that (M, x)
is almost guessed by S if for every (µ,M)-approximated subset
d ⊆ x , there is N ∈ S such that

• x ∈ N ⊆ M;

• d is N-guessed, i.e., there is e ∈ N such that d ∩ N = e ∩ N.

AGP(µ, κ,H(θ)) is the assertion that for every cofinal
S ⊆ PκH(θ) and every x ∈ H(θ), there are stationarily many
M ∈ PκH(θ) such that (M, x) is almost guessed by S .

Theorem

Suppose that µ ≤ κ are regular uncountable cardinals. TFAE:

1 SP(µ, κ,≥κ);

2 AGP(µ, κ,H(θ)) holds for all regular θ ≥ κ.
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Variations

Definition

Given Y ⊆ PκH(θ), AGPY(µ, κ,H(θ)) is the assertion that, for
every cofinal S ⊆ PκH(θ) and every x ∈ H(θ), there are
stationarily many M ∈ Y such that (M, x) is almost guessed by S .

Recall that a set C ⊆ PκX is a strong club if it is ⊆-cofinal and,
for every Z ∈ PκC, we have

⋃
Z ∈ C. A set S ⊆ PκX is weakly

stationary if it has nonempty intersection with every strong club.

Definition

Given Y ⊆ PκH(θ), wAGPY(µ, κ,H(θ)) is the assertion that, for
every cofinal S ⊆ PκH(θ) and every x ∈ H(θ), there are weakly
stationarily many M ∈ Y such that (M, x) is almost guessed by S .

Each of these principles ends up being equivalent to an analogously
modified variation of SP(. . .).
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Applications

Theorem

If µ is a regular uncountable cardinal, then wAGP(µ, µ+,H(µ+))
implies that there are no weak µ-Kurepa trees.

Given infinite regular cardinals χ < λ, a function c : [λ]2 → χ is
• subadditive if, for all α < β < γ < λ, we have

• c(α, γ) ≤ max{c(α, β), c(β, γ)};
• c(α, β) ≤ max{c(α, γ), c(β, γ)}.

• strongly unbounded if, for every unbounded A ⊆ λ, c“[A]2 is
unbounded in θ.

Theorem

Suppose that χ < χ+ < κ < λ are regular cardinals,
Y = {M ∈ PκH(λ+) | cf(sup(M ∩ λ)) > χ}, and
wAGPY(κ, κ,H(λ+)) holds. Then there are no subadditive
strongly unbounded functions c : [λ]2 → χ. In particular, ¬□(λ).
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Consistency

In “The combinatorial essence of supercompactness” (2012), Weiß
asserts in a side comment that, if µ < κ are regular cardinals and κ
is strongly compact, then SP(µ+, µ++,≥µ++) holds in the
extension by the Mitchell forcing M(µ, κ). We have been unable to
verify this; our attempts to do so were the primary impetus behind
introducing the “weak” versions of AGP and SP.

Theorem

Suppose that µ < κ are regular cardinals, with κ strongly compact.
Then, in the extension by M(µ, κ), wAGP(µ+, µ++,H(θ)) holds
for all regular θ ≥ µ++. Moreover, if A ⊆ [µ++, θ] is any set of
regular cardinals and |A| < µ++, then wAGPY(µ

+, µ++,H(θ))
holds, where Y is the set of M ∈ Pµ++H(θ) such that
cf(sup(M ∩ ν)) = µ+ for all ν ∈ A.
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III. Cardinal Arithmetic



Meeting numbers
Definition

Suppose that χ < λ are infinite cardinals.

Then the meeting
number m(χ, λ) is the minimal cardinality of a family Z ⊆ [λ]χ

such that, for all x ∈ [λ]χ, there is z ∈ Z such that |x ∩ z | = χ.

The meeting numbers of primary interest are those of the form
m(cf(λ), λ) for singular λ. A routine diagonalization shows that
m(cf(λ), λ) > λ for singular λ.

Theorem (Matet, 2021)

The following are equivalent:

1 Shelah’s Strong Hypothesis, i.e., pp(λ) = λ+ for all singular λ;

2 m(ω, λ) = λ+ for all λ > ω = cf(λ);

3 m(χ, λ) =

{
λ+ if λ > χ = cf(λ)

λ otherwise.
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Covering matrices

Fact

Suppose that λ is a singular cardinal with cf(λ) = χ. Then there is
a matrix D = ⟨D(i , β) | i < χ, β < λ+⟩ such that

• for all β < λ+, ⟨D(i , β) | i < χ⟩ is ⊆-increasing and⋃
i<χD(i , β) = β;

• for all α < β < λ+ and all i < χ, if α ∈ D(i , β), then
D(i , α) ⊆ D(i , β);

• for all β < λ+, there is i < χ such that D(i , β) contains a
club in β;

• for all i < χ and β < λ+, we have |D(i , β)| < λ.

Let us call such a matrix a covering matrix for λ+. Covering
matrices were introduced by Viale in order to prove that PFA
implies SCH.
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A key lemma

Given a “small” set X ⊆ λ+, we will be interested in looking at its
“traces” in a covering matrix D,

i.e., sequences of the form
⟨X ∩ D(i , β) | i < χ⟩ for some fixed β < λ+, and examining how
these traces change as β varies.

Lemma

Suppose that λ is a singular cardinal of cofinality χ and
D = ⟨D(i , β) | i < χ, β < λ+⟩ is a covering matrix for λ+. Then
for every X ∈ Pλλ

+, there is γX < λ+ such that, for all
β ∈ λ+ \ γX and all sufficiently large i < χ, we have
X ∩ D(i , β) = X ∩ D(i , γX ).

This was previously known only under the additional assumption
that 2|X | < λ.
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Covering properties

Definition (Viale)

Suppose that D = ⟨D(i , β) | i < χ, β < λ+⟩ is a covering matrix
for λ+.

Then CP(D) is the assertion that there is an unbounded
A ⊆ λ+ such that, for every x ∈ [A]χ, there are i < χ and β < λ+

such that x ⊆ D(i , β).

Observation (Viale)

Suppose that λ > χ = cf(λ), µχ < λ for all µ < λ, and CP(D)
holds for some covering matrix D for λ+. Then λχ = λ+.

Observation

Suppose that λ > χ = cf(λ), m(χ, µ) < λ for all µ < λ, and
CP(D) holds for some covering matrix D for λ+. Then
m(χ, λ) = λ+.
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SCH and SSH

Theorem (Viale, 2012, Krueger, 2019, Hachtman, 2019)

ISP(ω1, ω2,≥ω2) implies that CP(D) holds for every singular
cardinal λ > 2ω of countable cofinality and every covering matrix
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A corollary about P(ω1)

Recall that, by Cox–Krueger (2016), ISP(ω1, ω2,≥ω2) places no
restrictions on the value of 2ω beyond 2ω > ω1.

However, it does
place strong restrictions on the relationship between 2ω and 2ω1 .

Lemma

Suppose ¬wKH holds. Then 2ω1 = m(ω1, 2
ω).

Proof sketch.

Let Z ⊆ [<ω12]ω1 be such that |Z| = m(ω1, 2
ω) and, for every

x ∈ [<ω12]ω1 , there is z ∈ Z such that |x ∩ z | = ω1. For each
z ∈ Z, let Tz be the downward closure of z in <ω12. Then Tz is a
tree of height and size ≤ ω1, so it has at most ω1-many
uncountable branches. By the properties of Z, each b ∈ ω12 is an
uncountable branch through some Tz . There are only
ω1 ·m(ω1, 2

ω) = m(ω1, 2
ω)-many such branches.
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holds, where Y is as in the statement of the previous theorem.

Then 2ω1 =
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2ω if cf(2ω) ̸= ω1

(2ω)+ if cf(2ω) = ω1.

In particular, this holds under ISP(ω1, ω2,≥ω2).
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Narrow systems and SCH

In light of the fact that ISP(ω2, ω2,≥ω2) (or even, as we have
seen, a variation of SP(ω2, ω2,≥ω2)) implies SCH, it is natural to
ask whether, e.g., (I)TP(ω2,≥ω2) does the same.

In the context of the study of the (classical) tree property, the
concept of a narrow system is important, particularly at successors
of singular cardinals. The prototypical proof that the tree property
holds at the successor of some singular cardinal λ goes through
two steps:

1 Prove that every λ+-tree has a narrow subsystem of height
λ+.

2 Prove that every narrow subsystem of height λ+ has a cofinal
branch.

The notion of narrow system can be generalized to the Pκλ
setting.
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Two-cardinal narrow systems

Definition

Let κ ≤ λ be uncountable cardinals, with κ regular.

A
Pκλ-system is a structure S = ⟨Sx | x ∈ Pκλ⟩ such that

• for all x ∈ Pκλ, we have Sx ⊆ P(x);

• for all x ⊆ y in Pκλ, there is t ∈ Sy such that t ∩ x ∈ Sx .

The width of a Pκλ-system S is

width(S) := sup{|Sx | | x ∈ Pκλ⟩.

We say that S is a narrow Pκλ-system if width(S)+ < κ.

A cofinal branch through S is a subset b ⊆ λ such that, for
cofinally many x ∈ Pκλ, we have b ∩ x ∈ Sx .

Let NSP(Pκλ) be the assertion that every narrow Pκλ-system
has a cofinal branch.
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Two-cardinal narrow systems

Again, proofs of TP(κ, λ), particularly when κ is the successor of a
singular cardinal, can often be viewed as going through the
following two steps:

1 Every (κ, λ)-list gives rise to a narrow Pκλ-system.

2 Every narrow Pκλ-system has a cofinal branch.

As far as I can tell, NSP(Pκλ) holds in every known model of
TP(κ, λ), though it is unclear whether (I)TP(κ, λ) implies
NSP(κ, λ). (But, e.g., GMP(ω2, ω2, λ

+) does imply NSP(Pω2λ)).

NSP(Pκλ) is also generally easier to arrange than TP(κ, λ).

Theorem

Suppose that there is a proper class of supercompact cardinals.
Then there is a class forcing extension in which NSP(Pκλ) holds
for all uncountable κ ≤ λ with κ regular.
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Narrow systems and SCH

Theorem

Suppose that χ < χ+ < κ < λ are cardinals such that cf(λ) = χ,
κ is regular, and NSP(Pκλ

+) holds.

Then CP(D) holds for every
covering matrix D for λ+.

Proof sketch.

Let D = ⟨D(i , β) | i < χ, β < λ+⟩ be a covering matrix for λ+.
Recall that, for each x ∈ Pκλ

+, γx < λ+ is such that, for all
β ∈ λ+ \ γx and all sufficiently large i < χ, we have
x ∩ D(i , β) = x ∩ D(i , γx). Define a narrow Pκλ-system
S = ⟨Sx | x ∈ Pκλ⟩ by letting Sx := {x ∩ D(i , γx) | i < χ} for all
x ∈ Pκλ. Then a cofinal branch through S gives rise to an
unbounded A ⊆ λ+ and an i < χ such that, for cofinally many
x ∈ Pκλ, A ∩ x = D(i , γx). In particular, A witnesses CP(D).
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all λ ≥ κ. Then SCH holds above κ.
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Thank you for your attention.


