Ramsey theory over Partitions

Menachem Kojman

July 9, 2022

References

1. Chen-Mertens, Kojman and Steprans. Strong colorings over partitions. BSL 27(1) pp.67-90, 2021
2. Kojman, Rinot and Steprans. Ramsey theory over partitions I: Positive Ramsey relations from Forcing Axioms. IJM, to appear.
3. Kojman, Rinot and Steprans. Ramsey theory over partitions II: Negative Ramsey relations and pump-up theorems. IJM, to appear.
4. Kojman, Rinot and Steprans. Ramsey theory over partitions III: Strongly Luzin sets and partition relations. PAMS, to appear.
http://p.assafrinot.com/rop

Strong Colorings

- Strong colorings, which are witnesses to negative Ramsey relations, possess fantastic combinatorial properties that are used in a variety of arguments - among them arguments for producing stronger strong colorings from given ones.
- The first point of this talk is that strong colorings can be harnessed also to obtaining positive Ramsey relations on uncountable cardinals in some models of ZFC.
- The second is that in other models of ZFC there are even stronger strong colorings than the ones known so far.

Notation

- $A \subseteq \kappa$ is c-homogeneous for a coloring $c:[\kappa]^{2} \rightarrow \theta$ if $c \upharpoonright[A]^{2}$ is constant;
- it is c-omnichromatic if $\operatorname{Im}\left(c \upharpoonright[A]^{2}\right)=\theta$;
- the negation of c-omnichromatic is c-weak.
$-\kappa \longrightarrow(\lambda)_{\theta}^{2}$ says that for every coloring $c:[\kappa]^{2} \rightarrow \theta$ there is a c-homogeneous $A \in[\kappa]^{\lambda}$
- $\kappa \rightarrow[\lambda]_{\theta}^{2}$ says that for every c as above there is $A \in[\kappa]^{\lambda}$ which is c-weak.
- The negation $\kappa \rightarrow[\lambda]_{\theta}^{2}$ holds if there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that all $A \in[\kappa]^{\lambda}$ are c-omnichromatic.

Such a c are called strong.

Ramsey Relations

$-\aleph_{0} \rightarrow\left(\aleph_{0}\right)_{n}^{2}$ for all $n<\omega$, in particular $\aleph_{0} \rightarrow\left[\aleph_{0}\right]_{\aleph_{0}}^{2}$,

- $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ for all regular λ : there are strong $c:\left[\lambda^{+}\right]^{2} \rightarrow \lambda^{+}$.

Stronger strong colorings

- Parameters: number of colors, broader class of Target sets, higher dimension, more patterns.
$-\operatorname{Pr}_{0}\left(\aleph_{1}, \frac{N_{0} \circledast \aleph_{1}}{\square \aleph_{1}} \aleph_{1}, \aleph_{0}\right) \exists c:\left[\omega_{1}\right]^{2} \longrightarrow \omega_{1}$ st $\forall k, \ell<\omega$
$\forall A \subseteq\left[\omega_{1}\right]^{k},|A|=\lambda_{0} \quad \forall B \subseteq\left[w j^{j}|B|=N\right.$, BAth A, B pairwise disjoint
$\exists a \in \mathcal{A} \quad\left(\alpha_{i, j}\right) i<k, j<l \subseteq \omega, \exists b \in B \quad \max a<\min b$ and $\bigwedge_{i, i l} c(a(i), b(j))=\alpha_{i, j}$ where $a(i), b(j)$ are i th and j-t members of a, b hep-
- Todorcevic proved that $\operatorname{Pr}_{0}\left(\aleph_{1}, \frac{\aleph_{0} \circledast \aleph_{1}}{1 \circledast \aleph_{1}}, \aleph_{1}, \aleph_{0}\right)$ follows from a strongly Luzin set.

Relaxing Homogeneity to Relative Homogeneity

- When facing strong opponents it is good practice to Divide and Conquer. Let us fix some partition $p:[\kappa]^{2} \rightarrow \mu$.
- Given a coloring $c:[\kappa]^{2} \rightarrow \theta$ let us say that $A \subseteq \kappa$ is (p, c)-homogeneous [(p, c)-weak] if for every p-cell $X=p^{-1}(\{j\}), j<\mu$, it holds that $c \upharpoonright\left(X \cap[A]^{2}\right)$ is constant [is c-weak].
- If for every coloring $c:[\kappa]^{2} \rightarrow \theta$ there exists a (p, c)-homogeneous [(p, c)-weak] $A \in[\kappa]^{\lambda}$ then $\kappa \rightarrow_{p}(\lambda)_{\theta}^{2}$ $\left[\kappa \rightarrow_{p}[\lambda]_{\theta}^{2}\right]$ holds;
- if, on the other hand, there is a c such that every $A \in[\kappa]^{\lambda}$, for some p-cell X the set $[A]^{2} \cap X$ is omnichromatic, then c witnesses $\kappa \nrightarrow p_{p}[\lambda]_{\theta}^{2}$.

Stronger Strong colorings over p

Let τ denote assignments of colors to cells: $\tau: \mu \rightarrow \theta$.

- $\kappa \rightarrow_{p}(\lambda)_{\theta}^{2} \Longleftrightarrow(\forall c)(\exists A)(\exists \tau)\left(\forall\{\alpha, \beta\} \in[A]^{2}\right) c(\alpha, \beta)=$ $\tau(p(\alpha, \beta))$
- $\kappa \rightarrow_{p}[\lambda]_{\theta}^{2} \Longleftrightarrow(\forall c)(\exists A)(\exists \tau)\left(\forall\{\alpha, \beta\} \in[A]^{2}\right) c(\alpha, \beta) \neq$ $\tau(p(\alpha, \beta))$
- $\kappa \nrightarrow p_{p}[\lambda]_{\theta}^{2} \Longleftrightarrow(\exists c)(\forall A)(\forall \tau)\left(\exists\{\alpha, \beta\} \in[A]^{2}\right) c(\alpha, \beta)=$ $\tau(p(\alpha, \beta))$

So $\operatorname{Pr}_{0}\left(\aleph_{1}, \frac{\aleph_{0} \circledast \aleph_{1}}{1 \circledast \aleph_{1}}, \aleph_{1}, \aleph_{0}\right)_{p}$ means: replace a matrix of colors by a matrix of assignments $\tau_{i, j}$.

$$
\lambda_{i, j} c(a(i), b(j))=\tau_{i, j}(p(a(i), b(j))
$$

The strongest strong colorings may exists over every countable partition

If the CH holds or after adding at least \aleph_{2} Cohen reals,

$$
\operatorname{Pr}_{0}\left(\aleph_{1}, \frac{\aleph_{0} \circledast \aleph_{1}}{1 \circledast \aleph_{1}}, \aleph_{1}, \aleph_{0}\right)_{p}
$$

holds for every countable $p:\left[\omega_{1}\right]^{2} \rightarrow \omega_{0}$.
Theorem [KRS3]. $\operatorname{Pr}_{0}\left(\aleph_{1}, \frac{\aleph_{0} \circledast \aleph_{1}}{1 \oplus \aleph_{1}}, \aleph_{1}, \aleph_{0}\right)_{p}$ follows for all ℓ_{∞}-coherent partitions from just a non-meager set of reals of cardinality \aleph_{1}. Actually equivalent to $\operatorname{non}(\mathcal{M})=\aleph_{1}$. It does not follow for all countable partitions from a Luzin set together with a Souslin tree.
$p:\left[\omega_{1}\right]^{2} \rightarrow \omega_{0}$ is ℓ_{∞}-coherent if $\left\{p(\alpha, \beta)-p\left(\alpha, \beta^{\prime}\right) \mid \alpha<\beta\right\}$ is bounded for all $\beta<\beta^{\prime}<\omega_{1}$.

Stretching the number of colors from λ to λ^{+}.

Theorem [KRS2]. Let λ be an infinite cardinal. For every coloring $c:[\lambda]^{+} \rightarrow \lambda$ there is a coloring $c^{+}:\left[\lambda^{+}\right]^{2} \rightarrow \lambda^{+}$such that for every $\chi \leq \operatorname{cf}(\lambda)$ and $p:\left[\lambda^{+}\right]^{2} \rightarrow \mu$ for some $\mu \leq \lambda$:

- If c witnesses $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda, \chi\right)_{p}$ then c^{+}witnesses

$$
\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \chi\right)_{p}
$$

- If c witnesses $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{\circledast} \lambda^{+}, \lambda, \chi\right)_{p}$ then c^{+}witnesses

$$
\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{\circledast} \lambda^{+}, \lambda^{+}, \chi\right)_{p} .
$$

Positive relations from Forcing Axioms

1. Theorem [KRS1]. If $M A_{\aleph_{1}}(K)$ then for some $p:\left[\aleph_{1}\right]^{2} \rightarrow \aleph_{0}$ it holds that $\aleph_{1} \rightarrow_{p}\left(\aleph_{1}\right)_{\aleph_{0}}^{2}$.
2. Theorem [CRS1]. If $\lambda=\lambda^{<\lambda}$ and the Generalized MA holds at λ^{+}then for every $(<\lambda)$-saturated partition with injective and almost disjoint fibres, for every coloring $c:[\lambda]^{+} \rightarrow \lambda$ there is a decomposition $\dot{U}_{j<\lambda} X_{j}$ in which each X_{j} is of size $\lambda^{+},\left[X_{j}\right]^{2}$ meets all p-cells and X_{j} is (p, c)-homogeneous.

Characterizing positivity over p

- Theorem [CRS1]. Assume $\mathrm{MA}_{\aleph_{1}}$. Let $p:\left[\omega_{1}\right]^{2} \rightarrow \omega_{0}$ be a countable partition. Then $\aleph_{1} \rightarrow_{p}\left[\aleph_{1}\right]_{\aleph_{0}, \text { finite }}^{2}$ holds iff for some uncountable $X \subseteq \omega_{1}$ the restriction $p \upharpoonright[X]^{2}$ witnesses the strong coloring principle $\mathrm{U}\left(\aleph_{1}, \aleph_{1}, \aleph_{0}, \aleph_{0}\right)$ by Lambie-Hanson and Rinot.
$\mathrm{U}\left(\aleph_{1}, \aleph_{1}, \aleph_{0}, \aleph_{0}\right)$ holds iff there exists $c:\left[\omega_{1}\right]^{2} \rightarrow \omega_{0}$ such that for every pairwise disjoint, uncountable family \mathcal{A} of finite subsets of ω_{1} and $n<\omega$ there exists an uncountable $\mathcal{B} \subseteq \mathcal{A}$ such that $\min \{p(\alpha, \beta) \mid(\alpha, \beta) \in a \times b\}>n$ for all $a<b$ in \mathcal{B}. Unlike the stronger $\operatorname{Pr}_{1}\left(\aleph_{1}, \aleph_{1}, \aleph_{0}, \aleph_{0}\right)$, the principle $\mathrm{U}\left(\aleph_{1}, \aleph_{1}, \aleph_{0}, \aleph_{0}\right)$ holds in ZFC.

A miniature

- Sierpinski showed that $2^{\aleph_{0}} \nrightarrow\left[\aleph_{1}\right]_{2}^{2}$.
- Shelah proved the consistency (relative to a measurable cardinal) of $2^{\aleph_{0}} \rightarrow\left(\aleph_{1}\right)_{3}^{2}$ in "Was Sierpinski right I". Omitting one out of two colors is impossible, but omitting one out of three colors may be possible.
- Assume $2^{\aleph_{0}} \rightarrow\left[\aleph_{1}\right]_{4,2}^{2}$, that we can omit two out of four colors by passing to a set of reals of size \aleph_{1}. (Will hold it two of Shela's problems from WSRI hold together: $2^{\aleph_{0}} \rightarrow\left[\aleph_{2}\right]_{3}^{2}$ and $\left.\aleph_{2} \rightarrow\left[\aleph_{1}\right]_{3}^{2}\right)$.

Let p be some Sierpinski coloring. Then $2^{\aleph_{0}} \rightarrow_{p}\left(\aleph_{1}\right)_{2}^{2}$.

