Ramsey theory over Partitions

Menachem Kojman

July 9, 2022

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < ⊙ < ⊙

References

- 1. Chen-Mertens, Kojman and Steprans. *Strong colorings over partitions*. BSL 27(1) pp.67-90, 2021
- 2. Kojman, Rinot and Steprans. *Ramsey theory over partitions I: Positive Ramsey relations from Forcing Axioms*. IJM, to appear.
- 3. Kojman, Rinot and Steprans. *Ramsey theory over partitions II: Negative Ramsey relations and pump-up theorems*. IJM, to appear.
- 4. Kojman, Rinot and Steprans. *Ramsey theory over partitions III: Strongly Luzin sets and partition relations*. PAMS, to appear.

http://p.assafrinot.com/rop

Strong Colorings

- Strong colorings, which are witnesses to negative Ramsey relations, possess fantastic combinatorial properties that are used in a variety of arguments — among them arguments for producing stronger strong colorings from given ones.
- The first point of this talk is that strong colorings can be harnessed also to obtaining positive Ramsey relations on uncountable cardinals in some models of ZFC.
- The second is that in other models of ZFC there are even stronger strong colorings than the ones known so far.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Notation

- $A \subseteq \kappa$ is *c*-homogeneous for a coloring $c : [\kappa]^2 \to \theta$ if $c \upharpoonright [A]^2$ is constant;
- ▶ it is *c*-omnichromatic if $Im(c \upharpoonright [A]^2) = \theta$;
- the negation of c-omnichromatic is c-weak.
- $\kappa \longrightarrow (\lambda)^2_{\theta}$ says that for *every* coloring $c : [\kappa]^2 \to \theta$ there is a *c*-homogeneous $A \in [\kappa]^{\lambda}$
- $\kappa \to [\lambda]^2_{\theta}$ says that for every c as above there is $A \in [\kappa]^{\lambda}$ which is c-weak.
- ▶ The negation $\kappa \nleftrightarrow [\lambda]^2_{\theta}$ holds if there is a coloring $c : [\kappa]^2 \to \theta$ such that all $A \in [\kappa]^{\lambda}$ are *c*-omnichromatic.

Such a *c* are called *strong*.

Ramsey Relations

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シ۹℃

Stronger strong colorings

► Todorcevic proved that $\Pr_0(\aleph_1, \frac{\aleph_0 \circledast \aleph_1}{1 \circledast \aleph_1}, \aleph_1, \aleph_0)$ follows from a strongly Luzin set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ りへぐ

Relaxing Homogeneity to Relative Homogeneity

- ▶ When facing strong opponents it is good practice to Divide and Conquer. Let us fix some partition $p : [\kappa]^2 \to \mu$.
- Given a coloring c : [κ]² → θ let us say that A ⊆ κ is (p, c)-homogeneous [(p, c)-weak] if for every p-cell X = p⁻¹({j}), j < μ, it holds that c ↾ (X ∩ [A]²) is constant [is c-weak].
- If for every coloring c : [κ]² → θ there exists a (p, c)-homogeneous [(p, c)-weak] A ∈ [κ]^λ then κ →_p (λ)²_θ [κ →_p [λ]²_θ] holds;
- if, on the other hand, there is a c such that every A ∈ [κ]^λ, for some p-cell X the set [A]² ∩ X is omnichromatic, then c witnesses κ →_p [λ]²_θ.

Stronger Strong colorings over p

Let τ denote assignments of colors to cells: $\tau : \mu \to \theta$.

$$\kappa \to_{p} (\lambda)_{\theta}^{2} \iff (\forall c)(\exists A)(\exists \tau)(\forall \{\alpha, \beta\} \in [A]^{2}) c(\alpha, \beta) = \tau(p(\alpha, \beta))$$

$$\kappa \to_{p} [\lambda]_{\theta}^{2} \iff (\forall c)(\exists A)(\exists \tau)(\forall \{\alpha, \beta\} \in [A]^{2}) c(\alpha, \beta) \neq \tau(p(\alpha, \beta))$$

 $\kappa \not\rightarrow_{p} [\lambda]^{2}_{\theta} \iff (\exists c)(\forall A)(\forall \tau)(\exists \{\alpha, \beta\} \in [A]^{2}) c(\alpha, \beta) = \tau(p(\alpha, \beta))$

So $Pr_0(\aleph_1, \frac{\aleph_0 \otimes \aleph_1}{1 \otimes \aleph_1}, \aleph_1, \aleph_0)_p$ means: replace a matrix of colors by a matrix of assignments $\tau_{i,j}$.

$$\bigwedge_{c_1,s_2} c(a(c_2, b(c_2)) = C_{c_2,s_3}(p(a(c_1, b(c_2))))$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The strongest strong colorings may exists over every countable partition

If the CH holds or after adding at least \aleph_2 Cohen reals,

$$\operatorname{Pr}_{0}(\aleph_{1}, \frac{\aleph_{0} \circledast \aleph_{1}}{1 \circledast \aleph_{1}}, \aleph_{1}, \aleph_{0})_{\rho}$$

holds for *every* countable $p : [\omega_1]^2 \to \omega_0$.

Theorem [KRS3]. $\Pr_0(\aleph_1, \frac{\aleph_0 \circledast \aleph_1}{1 \circledast \aleph_1}, \aleph_1, \aleph_0)_p$ follows for all ℓ_{∞} -coherent partitions from just a non-meager set of reals of cardinality \aleph_1 . Actually equivalent to $\operatorname{non}(\mathcal{M}) = \aleph_1$. It does not follow for *all* countable partitions from a Luzin set together with a Souslin tree.

 $p: [\omega_1]^2 \to \omega_0$ is ℓ_{∞} -coherent if $\{p(\alpha, \beta) - p(\alpha, \beta') \mid \alpha < \beta\}$ is bounded for all $\beta < \beta' < \omega_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ りへぐ

Stretching the number of colors from λ to λ^+ .

Theorem [KRS2]. Let λ be an infinite cardinal. For every coloring $c : [\lambda]^+ \to \lambda$ there is a coloring $c^+ : [\lambda^+]^2 \to \lambda^+$ such that for every $\chi \leq cf(\lambda)$ and $p : [\lambda^+]^2 \to \mu$ for some $\mu \leq \lambda$:

- If c witnesses Pr₁(λ⁺, λ⁺, λ, χ)_p then c⁺ witnesses Pr₁(λ⁺, λ⁺, λ⁺, χ)_p.
- If c witnesses Pr₁(λ⁺, λ[®]λ⁺, λ, χ)_p then c⁺ witnesses Pr₁(λ⁺, λ[®]λ⁺, λ⁺, χ)_p.

Positive relations from Forcing Axioms

- 1. Theorem [KRS1]. If $MA_{\aleph_1}(K)$ then for some $p : [\aleph_1]^2 \to \aleph_0$ it holds that $\aleph_1 \to_p (\aleph_1)^2_{\aleph_0}$.
- 2. Theorem [CRS1]. If $\lambda = \lambda^{<\lambda}$ and the Generalized MA holds at λ^+ then for every (< λ)-saturated partition with injective and almost disjoint fibres, for every coloring $c : [\lambda]^+ \to \lambda$ there is a decomposition $\bigcup_{j < \lambda} X_j$ in which each X_j is of size λ^+ , $[X_j]^2$ meets all *p*-cells and X_j is (p, c)-homogeneous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Characterizing positivity over *p*

Theorem [CRS1]. Assume MA_{ℵ1}. Let p : [ω₁]² → ω₀ be a countable partition. Then ℵ₁ →_p [ℵ₁]²_{ℵ0,finite} holds iff for some uncountable X ⊆ ω₁ the restriction p ↾ [X]² witnesses the strong coloring principle U(ℵ₁, ℵ₁, ℵ₀, ℵ₀) by Lambie-Hanson and Rinot.

 $U(\aleph_1, \aleph_1, \aleph_0, \aleph_0)$ holds iff there exists $c : [\omega_1]^2 \to \omega_0$ such that for every pairwise disjoint, uncountable family \mathcal{A} of finite subsets of ω_1 and $n < \omega$ there exists an uncountable $\mathcal{B} \subseteq \mathcal{A}$ such that $\min\{p(\alpha, \beta) \mid (\alpha, \beta) \in a \times b\} > n$ for all a < b in \mathcal{B} . Unlike the stronger $Pr_1(\aleph_1, \aleph_1, \aleph_0, \aleph_0)$, the principle $U(\aleph_1, \aleph_1, \aleph_0, \aleph_0)$ holds in ZFC.

A miniature

- Sierpinski showed that $2^{\aleph_0} \not\rightarrow [\aleph_1]_2^2$.
- Shelah proved the consistency (relative to a measurable cardinal) of 2^{ℵ₀} → (ℵ₁)²₃ in "Was Sierpinski right I". Omitting one out of two colors is impossible, but omitting one out of three colors may be possible.
- ▶ Assume $2^{\aleph_0} \rightarrow [\aleph_1]_{4,2}^2$, that we can omit two out of four colors by passing to a set of reals of size \aleph_1 . (Will hold it two of Shela's problems from WSRI hold together: $2^{\aleph_0} \rightarrow [\aleph_2]_3^2$ and $\aleph_2 \rightarrow [\aleph_1]_3^2$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ 少へ⊙

Let p be some Sierpinski coloring. Then $2^{\aleph_0} \rightarrow_p (\aleph_1)_2^2$.