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Definition
We say that a cardinal κ is measurable if it is uncountable and there is a
κ-complete free ultrafilter on κ.

Theorem
Suppose that κ is a measurable cardinal, then κ is regular and if λ < κ, then
there is no injection from κ into 2λ.

Theorem (Jech 1968)
It is consistent with ZF, relative to the existence of a measurable cardinal, that
ℵ1 is measurable.
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Thank you for your attention!
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Theorem
The following are equivalent in ZFC:

1 κ is measurable.

2 κ is the critical point of an embedding j : Vκ+1 → M .

3 κ is the critical point of an embedding j : V → M .

4 κ is the critical point of an embedding j : V → M where Mκ ⊆ M .

5 κ is the critical point of an ultrapower embedding.

In ZF no two of these are equivalent.∗

(Most of the proofs are mostly written.)

(It is also not clear whether 2 and 3 are equivalent or not with the current tools.)
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Definition (Hayut–K.)
We say that a cardinal κ is a critical cardinal if it is the critical point of an
elementary embedding j : Vκ+1 → M , where M is some transitive set.

Theorem (Hayut–K.)
Let κ be a critical cardinal. Then,

1 κ is regular and a strong limit. Equivalently, Vκ |= ZF2.
2 κ is measurable and carries a normal measure.
3 κ is a limit (in measure) of weakly critical cardinals.

It is consistent with ZF, however, that a measurable cardinal carries no
normal measures, or that it is not a limit cardinal, or that it is not
reflecting all the “reasonable” properties.
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Definition (Hayut–K.)
We say that a cardinal κ is a weakly critical cardinal if for any A ⊆ Vκ

there is an elementary embedding between transitive sets j : X → M

with crit(j) = κ and κ, A, Vκ ∈ X ∩ M .

Proposition (Hayut–K.)
κ is weakly critical if and only if for every A ⊆ Vκ there is a transitive set M

which is an elementary end-extension of Vκ with A ∈ M .

Proposition (Hayut–K.)
If κ is weakly critical, then κ is strongly inaccessible, a Mahlo cardinal, it is the
limit of Mahlo cardinals, and so on.

Proposition (Hayut–K.)
If κ is critical, then it is reflects being weakly critical. That is, there is a
measure-1 set of weakly critical cardinals below κ.
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Proposition (Hayut–K.)
If κ is weakly critical, then κ is strongly inaccessible and a Mahlo cardinal.

Proof.
Let α < κ and f : Vα → κ by any function. Let j : X → M be witnesses that
κ being weakly critical with f ∈ X ∩ M being our subset of Vκ. Then
j(Vα) = Vα, so it follows j(f) = f .

But that means that M |= sup rng(j(f)) ⩽ κ < j(κ), which means
X |= sup rng(f) < κ.

Next, let C ⊆ κ be a club. Let j : X → M be witnesses that κ is weakly
critical with C ∈ X ∩ M . Then j(C) is a club in j(κ) ∈ M with j(C) ∩ κ = C.
Therefore κ ∈ j(C), so M satisfies that j(C) contains an inaccessible
cardinal. By elementarity there is an inaccessible cardinal in C already.

This method extends to any other reflection-style proofs.
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So.

How do we get “small” measurable cardinals?

Clearly, the axiom of choice needs to be violated.

From a consistency point of view, if U is a measure on κ, then L[U ] is a
model of ZFC in which κ is measurable. So there is no way to avoid the
large cardinal strength.
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In order to violate the axiom of choice we rely on a technique called
“symmetric extensions”.

Definition
Let G be a group. We say that F is a filter of subgroups if it is a filter on
the lattice of subgroups. That is, a non-empty collection of subgroups of
G which is closed under supergroups and finite intersections.

We say that F is normal if whenever H ∈ F and π ∈ G , πHπ−1 ∈ F .

If P is a notion of forcing, G ⊆ Aut(P), and F is a normal filter of
subgroups of G , we can identify a class of P-names, denoted by HSF ,
such that whenever G ⊆ P is a V -generic filter, HSG

F = {ẋG | ẋ ∈ HSF } is a
transitive class model of ZF containing V .

We call this class a symmetric extension, and we say that ⟨P, G , F ⟩ is a
symmetric system.
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Theorem (Folklore, essentially Jech)
Suppose V |= ZF, κ a measurable cardinal in V , and U is a measure on κ.

Let
W ⊇ V such that for every A ⊆ κ, V [A] has a unique extension of U to a
measure on κ. Then U extends to a unique measure on κ in W .

Proof.
Let UA denote the unique extension in V [A], and let U+ =

⋃
{UA | A ⊆ κ}.

We claim that U+ is a κ-complete ultrafilter.
1 If A ∈ U+, then A ∈ UA. Otherwise κ \ A ∈ UA. Take some C such that

A ∈ UC , then UC must extend UA, which is a contradiction.
2 If A ∈ U+ and A ⊆ B, Let C be a set coding both A and B, then

A ∈ UC , and therefore B ∈ UC as well.
3 If A, B ∈ U+, fix C such that A, B ∈ UC , then A ∩ B ∈ UC .
4 If γ < κ and {Aα | α < γ} ⊆ U+, code the family by some C, then

UAα ⊆ UC for all α < γ. Moreover, {Aα | α < γ} ∈ V [C], so its
intersection is there as well.
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Theorem (Silver’s criterion)
j : V → M lifts to j : V [G] → M [H] if and only if we can set j(G) = H .

If we want this lifting to be internal to V [G] that means that H ∈ V [G].
One easy way of having this is when we have:

1 j(P) ∼= P ∗ Q̇.
2 There is a P-name, Ḣ , such that 1 ⊩P Ḣ ⊆ Q̇ is M̌ -generic.

We wish to emulate this sort of condition in the case of symmetric
extensions.
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Inaccurately Stated Theorem (Hayut–K.)
Suppose j : V → M is an elementary embedding and ⟨P, G , F ⟩ is a
symmetric system. Then j lifts to the symmetric extension if the following
conditions hold:

1 j(⟨P, G , F ⟩) ∼= ⟨P, G , F ⟩ ∗
〈
Q̇, ˙H , ˙K

〉
,

2 there is Ḣ ∈ HSF which is “sufficiently M -generic” for Q̇,
3 the name for Ḣ is forced to be “sufficiently stable” under the action of ˙H ,
4 and ∀K ∈ j(F ) ∃K0 ∈ F , j(K0) ⊆ K.

Jiachen Yuan and myself have made progress towards a general and complete generalisation of Silver’s criterion. But more work is needed.

Theorem (Hayut–K.)
We can replace the fourth condition by

∀K ∈ j(F ) ∃K0 ∈ F , j“K0 ⊆ K

The new change is significant, since it opens up the door for a lot of the
interesting cases where j(P) = P×Q and we already have H ∈ V .
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Question (Kaplan)
Can the least measurable cardinal be the least weakly critical cardinal?

Theorem (Hayut–K.)
It is consistent relative to a measurable cardinal that the least weakly critical
cardinal is the least measurable cardinal.

General gist of a Proof.
Let κ be a measurable cardinal. Consider the Easton support product of
Qα for α < κ inaccessible, which adds a non-reflecting stationary subset
to Sα

ω . This partial order is homogeneous, so we can take the product of
the automorphism groups acting pointwise on each Qα, with F being the
filter generated by

∏
α<κ Hα, where on a tail of α, Hα = Aut(Qα).
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Theorem (Hayut–K.)
It is consistent relative to a measurable cardinal that the least Mahlo cardinal
is the least measurable cardinal.

Proof.
Repeat the same proof, this time adding a club to the singular cardinals
instead of a non-reflecting subset. The homogeneity argument shows
that any set of ordinals is added by a bounded part of the forcing. In
particular, κ remains measurable.

To see that κ remains Mahlo, note that if C is a club, then in V [C], κ is
Mahlo, so C must contain a strongly inaccessible cardinal. But as the
forcing did not collapse any cardinals or change the continuum function,
those remain strongly inaccessible in the symmetric extension.
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Theorem (Hayut–K.)
Suppose that the least inaccessible cardinal is the least measurable cardinal.
Then there is an inner model with a measurable cardinal κ with o(κ) ⩾ 2.

Vague Shadow of Proof.
Let κ be the least inaccessible cardinal, which is the least measurable
cardinal, and let U be a measure on κ. Fix a club of singular cardinals
C ⊆ κ, which exists since κ is not Mahlo.

We can define a relevant core model, K, in HOD and show that κ is
measurable there. Moreover, we can find α ∈ C which is regular in K.

Let A ⊆ α be a short cofinal sequence in V . By forcing A over HOD, we get
a model of ZFC with the same K, for which covering fails.

So in K it must be that o(κ) ⩾ 2.
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Where do we go now?

Question
1 What is the exact consistency strength of the statement “the least

inaccessible cardinal is a measurable”?
2 Will it change if we also require that it is a limit of measurable cardinals

(these will have to be successor cardinals themselves)?
3 Will it change if we require some level of choice to hold below that

measurable?

Question
Is there a reasonable construction, starting from much stronger large
cardinal assumptions, of a model of ZF in which the least inaccessible
cardinal is the least measurable cardinal?
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